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Eukaryotic genomes contain thousands of genes organized into complex
and interconnected genetic interaction networks. Most of our understanding
of how genetic variation affects these networks comes from quantitative-trait
loci mapping and from the systematic analysis of double-deletion (or knock-
down) mutants, primarily in the yeast Saccharomyces cerevisiae. Evolve and
re-sequence experiments are an alternative approach for identifying novel
functional variants and genetic interactions, particularly between non-loss-
of-function mutations. These experiments leverage natural selection to
obtain genotypes with functionally important variants and positive genetic
interactions. However, no systematic methods for detecting genetic inter-
actions in these data are yet available. Here, we introduce a computational
method based on the idea that variants in genes that interact will co-occur
in evolved genotypes more often than expected by chance. We apply this
method to a previously published yeast experimental evolution dataset.
We find that genetic targets of selection are distributed non-uniformly
among evolved genotypes, indicating that genetic interactions had a signifi-
cant effect on evolutionary trajectories. We identify individual gene pairs
with a statistically significant genetic interaction score. The strongest inter-
action is between genes TRKI and PHOS84, genes that have not been
reported to interact in previous systematic studies. Our work demonstrates
that leveraging parallelism in experimental evolution is useful for identifying
genetic interactions that have escaped detection by other methods.

This article is part of the theme issue ‘Convergent evolution in the
genomics era: new insights and directions’.

1. Introduction

Determining the extent to which genetic variants interact to affect phenotypes is
a central challenge in biology. Traditional methods such as quantitative-trait
loci (QTL) mapping and double-deletion analysis have proven useful for iden-
tifying functional variants and genetic interactions in laboratory model systems
such as the yeast Saccharomyces cerevisiae. However, both of these methods have
limitations. QTL mapping provides a robust approach to identifying natural
genetic variants that contribute to complex traits, but most studies are under-
powered to detect genetic interactions. Large studies (with in the order of 10°
segregants) have shown that QTL-QTL interactions contribute to a wide
array of complex traits [1-4], but even the largest study to date did not have
the statistical power to identify small-effect interactions [2]. In addition, genetic
linkage makes it difficult in many cases to identify the causal variants
underlying most QTLs.

Systematic phenotypic screens of double deletions/knockdowns in yeast
and other organisms avoid these problems [5-8]. These types of studies have
successfully identified a large number of genetic interactions, particularly
within protein complexes [9]. By design, this approach is limited to detecting
only strong pairwise interactions between loss-of-function variants. Most
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natural variation, however, is not loss of function [10,11], and
thus, a comprehensive picture of genetic interactions will
require tests of interactions between functional variants.

An alternative approach to identifying functionally
important variants and interactions between them is to lever-
age the power of natural selection. When different
populations of the same or different species face the same
environmental challenge, natural selection often finds the
same phenotypic [12-14] or even genetic [15-17] solution
to this challenge. This phenomenon is referred to as conver-
gent or parallel evolution. Thus, the observation of parallel
genetic changes in multiple independent lineages can be
used to identify variants that contribute to functionally
important traits [18-20]. This approach has been successful
in identifying key mutations in pathogen and tumour evol-
ution [21-24]. The idea of convergence or parallelism has
also been used to detect epistasis within genes [25-29] and
more recently also between genes [30] in natural populations.
In this type of analysis, pairs of variants are identified as
genetically interacting if they co-occur in the same genotype
more often than expected by chance. There are three chal-
lenges in using parallelism to detect functional variants and
genetic interactions in natural populations. First, true func-
tional parallelism is confounded by common ancestry.
Second, because we rarely know what selection pressures
drove the evolution of the functional variants, it is difficult
to connect genotype with phenotype. Third, detecting epista-
sis requires many variants to accumulate and is therefore only
feasible in either fast evolving populations or over very long
time-scales.

Evolve and re-sequence experiments offer a complemen-
tary approach for detecting functional variants and genetic
interactions. Like inferences from natural populations, this
approach also relies on selection to find functional variants
and genetic interactions between them. This approach, how-
ever, overcomes problems arising in studies of naturally
evolving populations. Hundreds of replicate microbial popu-
lations can be propagated in identical conditions such that
the selected phenotypes are either known or can be measured
[31]. After hundreds or thousands of generations, entire
populations or individual isolated clones are sequenced,
and adaptive variants are identified by their parallel occur-
rence in replicate lines (e.g. [32-36]). Since replicate
populations evolve independently, overabundance of parallel
variants is a signal of positive selection, which is not con-
founded by common ancestry. Genetic interactions are
known to contribute to adaptive evolution [37], and the
data from evolve and re-sequence experiments must contain
information about these genetic interactions. To the best of
our knowledge, only one study so far has leveraged this
type of data to detect epistasis and demonstrate how it
affected evolutionary trajectories [36]. The challenge is that
large datasets are required to detect overrepresented pairs
of genes that contain interacting variants. However, unlike
in QTL mapping approaches, the number of variants in
experimentally evolved populations can be controlled to
increase statistical power to reveal genetic interactions. At
the same time, evolution in the laboratory, just like evolution
in nature, assesses all types of variants, which in principle
allows us to detect genetic interactions that may not be
revealed in gene-deletion studies.

Here, we present an approach that leverages parallelism
in experimental evolution to detect genetic interactions

between genes that acquire mutations independently across [ 2 |

populations. We detect genetic interactions between pairs of
genes using mutual information [38-40]. This quantity cap-
tures the statistical dependence between the occurrences of
mutations at two specific loci in the same genotype. We use
this approach to analyse a recently published whole-
genome dataset derived from experimentally evolved asexual
populations of yeast. We find that the accumulated mutations
are distributed between genotypes non-uniformly, indicating
that genetic interactions have contributed to adaptive evol-
ution in these laboratory populations. We identify specific
pairs of genes that have acquired mutations in parallel
more often than expected by chance, indicating putative gen-
etic interactions. We experimentally verify that our top-hit
pair, TRK1 and PHO84, shows a positive genetic interaction
when reconstructed in the ancestral background.

2. Material and methods

(a) Sequencing data re-analysis

Evolved mutations used for this analysis were obtained from 92
endpoint clones isolated from 42 populations of 4000 generation
evolved autodiploids, previously reported in Fisher et al. [33].
Populations were grown in rich media in individual wells of
unshaken 96-well plates at 30°C and diluted 1:1024 every 24 h.
At approximately 60 generation intervals, populations were
cryoarchived in 15% glycerol. We reanalysed the raw sequencing
data to improve annotation quality. All raw data files were
demultiplexed using a custom python script (barcodesplitter.py)
from L. Parsons (Princeton University). Adapter sequences were
trimmed using fastx_clipper (FASTX Toolkit). Reads were then
aligned to a customized W303 genome using BWA v. 0.7.12
[41]. VCFtools was used to filter variants common to all samples
and mating-type-specific polymorphisms (see [33]). Remaining
polymorphisms were then annotated using a strain-background
customized annotation file [42].

(b) Calculating mutual information

We used the evolved mutations generated by reprocessed
sequence data to look for evidence of genetic interactions. To pre-
vent false positives due to common ancestry, only one clone with
the most mutations from each population was included in the
analysis. We then excluded all intergenic and synonymous
mutations. Lastly, to reduce the number of statistical tests, we
looked for genetic interactions only among ‘multi-hit’ genes,
i.e. those in which at least three mutations in independent popu-
lations were detected in the dataset. This was done to reduce
noise by enriching for beneficial mutations. Nevertheless, we
estimate, by simulation controlling for gene length, that 12% of
genes receive three or more mutations by chance alone and are
likely neutral. This reduced dataset includes 113 ‘multi-hit’
genes from 46 independently evolved genotypes.

For all 6328 pairwise combinations of multi-hit genes, we cal-
culated the mutual information statistic. To do so, we model an
evolved genotype with a series of (possibly non-independent)
Bernoulli random variables o; with i=1,2,...,K, where K=
113, the total number of genes where mutations can possibly
occur; o; takes value 1 if a mutation occurs (in the data) in
gene i and it takes values 0 if it does not occur. We first estimate
the marginal probability of a mutation occurring in gene i as

N
P(oy =1)=Cm Y _ M. (2.1)

Here, My = M, + & and M,,; = 1 if mutation in gene i is present
in genotype g in the data. We regularize our estimates by adding
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a pseudocount £ = 1/M, where M is equal to the total number of
mutations in the dataset [43]. Our results are robust with respect
to the choice of & (see below). The sum is taken over all N = 46
genotypes and Cyy = 1/N(1 + ¢) is the normalization constant.
The probability of a mutation not occurring in gene i is then
P(o; =0) =1 —P(0; = 1). We also estimate the joint probability
distribution P(0;,07) for each gene pair (i,j) as follows:

N
Ploj=1,01=1)= (Y _ MMy, (2.2)
g=1

P(o; =0, gj = 1) = C] 1+e— Mgi)Mg'/ (23)

M=

_

g=

N
Plo;=1,0=0)= G Y _ My(l+&— My) (2.4)
g=1

N
and P(oi=0,0=0)= G Y (1+&— Mu)1+e— My),
g=1
(2.5)

where C; = 1/N(1 + &)*. We use these estimates of joint prob-
abilities to estimate the mutual information statistic MI;
between random variables o; and o; as

P(Ui:x/Uj:y)

log, —P(O'j — 9Pl = y) . (2.6)

ML']' = Z P(O‘,‘ =X, gj = y)
xy€(0,1}

The aggregate mutual information statistic Ml for the full data-
set is then calculated as

K-1

K
Ml = Y > My (2.7)

i=1 j=it1

() Generating null datasets

To obtain the null distributions for the individual MI;; statistics
and for the aggregate Ml,; statistic, we generated 'null’ datasets
that are structurally identical to our real dataset, but in which the
mutations are distributed randomly and independently across
genotypes with the same marginal probabilities as in the real
data. Specifically, in each ‘null’ dataset, we generated N =46
genotypes by randomly and independently drawing each value
Mg, g=1,...,N,i=1,...,K from the Bernoulli distribution
with estimated marginal success probability P(o; = 1) for each
gene i. This method preserves the average numbers of mutations
per gene and per clone.

To obtain the null distributions for each MI;; and Ml., we gen-
erated 100000 ‘null” datasets, and calculated all MI; and Ml
statistics for each ‘null” dataset as described above. We then esti-
mated the p-value for all MI;; and Ml and obtained nominally
significant pairs of genes at different significance thresholds. Since
the MIj; statistics are not independent, we estimated the false discov-
ery rate (FDR) and the p-values for the observed number of
nominally significant pairs from our ‘null’ datasets [27].

(d) Strain construction

Evolved alleles of the most significant gene pair, PHO84 and
TRK1, were reconstructed into the ancestral background using
CRISPR-Cas9 allele swaps. We first constructed plasmids start-
ing from pML104 (Addgene 67638), which constitutively
expresses Cas9 and a guide RNA (gRNA). We designed
gRNAs to target one site in PHO84 (5-CCCGTA
GAAAGCAACATCTAA-3) and two sites in TRKI (5-
TTTTGGGTTCAAATCATCGAA-3' and 5-GGAGAACAACTCC
TACTCGAC-3'). Plasmids were transformed into our ancestral
background (yGIL1298: MAT«, ade2-1, CAN1, his3-11, leu2-3,
112, trpl-1, URA3, bar1A::ADE2, hmlaA::LEU2, GPA1:KanMX,
ura3A::PFUS1-yEVenus) along with a 500bp linear repair

template (gBlock, IDT) encoding the appropriate evolved allele
(pho84-A1071C, trk1-A733G and trk1-C1353G) as well as a
synonymous PAM site change. Transformants were genotyped
to confirm successful integration of each mutant allele. The
pho84-A1071C mutant strain was backcrossed to yGIL432
(MATa, GPAI:NatMX, otherwise isogenic to yGIL1298) to
move the pho84-A1071C allele to the MATa background. This
pho84-A1071C MATa strain was crossed to yGIL1298 to generate
heterozygous pho84-A1071C mutants, and to each of two tkrl
mutants to generate heterozygous double mutants. Heterozy-
gous single trkl mutants were created by crossing correct
transformants to yGIL432. All MATa/« diploids were then con-
verted to MATa/a to correspond with the autodiploid
background in which the mutations arose by transforming
diploids with pGIL088, which contains a galactose-inducible HO
homing endonuclease, as reported in Fisher ef al. [33].

(e) Fitness assay and interaction analysis

Fitness assays were performed as described previously [33].
Briefly, mutant cultures were mixed 1 : 1 with an autodiploid ver-
sion of the ancestral strain (yGIL1064) labelled with ymCitrine at
URA3. Cultures were propagated in a 96-well plate in an identi-
cal fashion to the evolution experiment for 50 generations. At
10-generation intervals, saturated cultures were sampled for
flow cytometry. Analysis of flow cytometry data was performed
with FlowJo 10.3. The selective coefficient was calculated as the
slope of the best-fit line of the natural log of the ratio between
query and reference strains against time.

Selection coefficients were measured for two technical repli-
cates each of four biological replicates of pho84-A1071C and
eight biological replicates of the remaining four query genotypes
(trk1-A733G, trk1-C1353G, pho84-A1071C/trk1-A733G  and
pho84-A1071C/trk1-A1353G). One reconstructed clone had an
abnormally high fitness, likely due to secondary mutations intro-
duced during transformation, and was removed from the analysis.
There was no significant difference in fitness between the two
single trkl alleles (t3=0.95, p=0.35) or between the two
double mutants (f,5 = —1.087, p = 0.29), so data for these geno-
types were pooled. The expected additive fitness distribution of
the double mutant was calculated by adding the mean selection
coefficients and propagating the standard deviation of trk1 and
pho84 single mutants. A one-tailed two-sample t-test was used
to test for deviation from additive expectation.

(f) Network and clustering analysis

Hierarchical clustering and heatmap generation were done using
the pheatmap R package [44]. Mutual information matrices were
clustered by rows and columns using a Euclidean distance
matrix. Subclusters shown were identified by trimming row
and column dendrograms to five groups and identifying the
four subclusters containing less than 20 genes. The significant
pair network was generated via the R igraph package [45].

3. Results

(a) Identifying putative genetic interactions

We set out to look for genetic interactions between beneficial
mutations that arose in a previously published yeast evol-
ution experiment for which whole-genome sequencing data
are publicly available [33]. In this experiment, 46 replicate
autodiploid yeast populations evolved in the same laboratory
environment for 4000 generations [33]. Using a custom bio-
informatics pipeline (Methods), we identified 3835 unique
new mutations that arose during evolution. We found 113
‘multi-hit’ genes, i.e. genes in which a non-synonymous or
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a nonsense mutation was discovered in at least three indepen-
dent populations. Since we expect to find only 13.5 of such
genes by chance if mutations were distributed randomly
across the genome, multi-hit genes must be highly enriched
for targets of selection.

We asked whether any pairs of multi-hit genes occurred
in our data more or less often than expected by chance.
Such over- or underrepresentation would indicate parallel
evolution driven by genetic interactions. We calculated the
aggregate mutual information statistic, Ml,: (Methods),
which serves as an overall measure of mutational non-
independence in our dataset, and found that Ml = 87.7
bits. We compared this value to the null distribution
generated by randomly and independently distributing
mutations among evolved genotypes 10° times (see Methods)
and found that the observed value was significantly larger
than expected by chance (p < 1073; figure 1; electronic sup-
plementary material, figure S1). On average, the knowledge
that a mutation in one gene is present in a given genotype
provides a very small amount (87.7/6328 = 0.014 bits) of
information about the presence of a mutation in any other
specific gene. Nevertheless, the fact that mutated genes are
distributed non-uniformly across evolved genotypes indi-
cates that genetic networks subtly but significantly affected
the mutational trajectories in our evolving populations.

Our estimates of mutual information depend on the value
of the pseudocount parameter € (see Methods). We re-ran our
analysis (albeit with 10 simulations instead of 10°) at varying
values of ¢ between 0.0002 (¢ = 0.1/M) and 0.004 (¢ = 2/M)
and found that our main result is robust with respect
to the choice of & (electronic supplementary material,
figure S2).

Next, we compared the mutual information statistic MI;;
for each gene pair (i,j) in the dataset to its respective null dis-
tribution (see Methods; electronic supplementary material,
figure S3). We identified a significant genetic interaction
between two genes if the p-value for their MI; was less
than 0.003. At this cut-off, we expect to observe 18.8 interact-
ing gene pairs under our null model, but in fact we observe
33 (FDR of 0.57) and this excess is highly significant (p <
0.005; electronic supplementary material, figure S4).
Thirty-three significant gene pairs comprise 42 unique
genes (electronic supplementary material, table S1).

Interactions between functional variants might be
expected to exhibit allele specificity. We examined the
identity of independently derived mutations in the top five
most significant putative interactions (electronic supplemen-
tary material, table S2). Three of the nine genes in the top
five pairs showed evidence of repeated loss of function as
indicated by PROVEAN score (IRA2, LTE1, WHI2) [46].
Mutations in the remaining six genes show a mix of predicted
effects. We examined the positions of mutations within each
gene to look for patterns of site-specific variation. We
found that the distribution of mutations across coding
sequences was consistent with the uniform null hypothesis.

(b) Experimental verification of genetic interaction

between mutations in PH084 and TRK1

Despite the high FDR, our epistasis analysis suggests that
mutations in the top significant pair of genes, PHO84 and
TRK1 (nominal p < 107°), exhibit a true genetic interaction.
Mutations in these two genes co-occurred in the same

10000

7500

5000

no. simulations

2500

60 70 80 90
MI

tot

Figure 1. Histogram showing the null distribution of the aggregated Mo
statistic based on 100 000 simulations (see Methods). Observed Ml is
indicated by the black triangle.

genotype in our data three times and never exhibited a
higher value of mutual information in any of the 100000
simulations. When examining the complete dataset, including
all clones descending from each population, we found that a
mutation in the PHO84 gene precedes a mutation in TRK1 in
at least one population and that all populations with a non-
synonymous mutation in PHOS84 allele acquire a TRKI
mutation (electronic supplementary material, figure S5).

To experimentally validate this positive genetic inter-
action, we reconstructed one allele of pho84 and two alleles
of trkl in the ancestral background both as single mutants
and as double pho84/trkl mutants. All mutations were con-
structed as heterozygotes—the state in which they are
maintained in the evolution experiment—and assayed for fit-
ness. The mutant pho84 and trkl alleles conferred small but
measurable fitness benefits (0.009 + 0.001 s.e. for pho84 and
0.003 + 0.001 s.e. for trkl). We found that the fitness of the
pho84/trkl double mutant (0.015 + 0.001 s.e.) was higher
than the expectation based on the sum of fitnesses of single
mutants (0.013 + 0.001 s.e., figure 2), although the difference
was only marginally significant (tss = 1.74, p = 0.043).

(c) Structure of genetic interaction networks

We found that the set of putatively interacting genes is highly
interconnected. The most significant 33 gene pairs consist of
eight modules that contain at least three genes each and five
isolated gene—gene interaction pairs (figure 3). The three lar-
gest modules encompass 42% of all candidate significant
interactions. We performed hierarchical clustering on MI;
and found that this matrix contains multiple small but tightly
connected blocks (figure 4). On average, mutual information
between any two genes within a block was eight times
higher than between a random pair of genes (0.098 bits
versus 0.012 bits). Notably, these blocks largely overlapped
with the modules observed among putatively interacting
pairs. This suggests that genetic interactions, rather than
being exclusively strong pairwise interactions, are often
dispersed among small networks of interacting genes.

4. Discussion

Even the simplest free-living microorganisms encode thou-
sands of genes organized into complex and interconnected
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Figure 2. Fitness advantage of the single TRK7 and PHO84 mutations and of the double mutant. Replicate measurements are plotted as grey circles. Mean estimates
are plotted as bold circles + standard error. The red square indicates the additive expectation for the double mutant.
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Figure 3. Network of all genes identified in significant gene pairs. Edges are scaled by Mi; and connect all genes that co-occur in the same background at least
once. Bolded lines represent significant pairwise Ml;. Colours correspond to interconnected significant pairs. White circles indicate isolated gene pairs. Modules are

labelled by size.

networks that collectively determine the organism’s fitness.
These genetic interaction networks constrain evolution such
that populations evolving in identical conditions often find
similar genetic solutions, both in nature and in the laboratory
(e.g. [14,36,47]). Here, we developed a method, based on
mutual information, that exploits genetic parallelism observed
in microbial evolution experiments to infer genetic interactions
between loci that acquired mutations in independent

populations. With this method, we found that genetic inter-
actions had an overall significant effect on mutational
trajectories of evolved populations. We also identified 33
gene pairs (at FDR of 0.57) that exhibit the strongest genetic
interactions in our dataset. We provide experimental support
for one of these interactions, between genes PHO84 and TRK1.

Our method for detecting genetic interactions comp-
lements existing approaches. Most of our understanding of
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Figure 4. Hierarchical clustering of genes by pairwise mutual information captures the most significant pairs and networks among significant pairs. Subclusters
shown were identified by trimming row and column dendrograms to five groups and identifying the four subclusters containing less than 20 genes.

genetic interactions comes from the systematic analysis of
double-deletion/knockdown mutations [5,6,8,9,47-52]. By
design, these approaches query only
mutations, which represent less than 5% of natural variation

loss-of-function

in both yeast and humans [10,11]. By contrast, our approach
can detect pairwise epistasis between all classes of beneficial
variants, including gain-of-function mutations, mutations in
essential genes and regulatory mutations that would be
missed in gene-deletion studies. Indeed, out of the 33 most sig-
nificant gene pairs, only one genetic interaction (between SIN3
and TRK1) was known previously [6]. The most significant
interaction discovered here is between genes TRKI and
PHOB84. TRK1 encodes a high-affinity potassium transporter
and PHO84 encodes a high-affinity phosphate transporter.
The biological cause of their interaction is unclear, although
there is evidence of crosstalk between potassium and
phosphate import [53,54].

While gene-deletion studies are particularly good at
detecting strong negative pairwise interactions between dele-
terious mutations, such as synthetic lethality (reviewed in
[9]), our method identifies primarily positive interactions
between pairs of selectively accessible mutations. In theory,
our approach could also capture negative interactions, but
this would require observing an absence of certain muta-
tional combinations more often than expected by chance.
Such mutational incompatibilities have been observed in
evolution experiments [36,47]; for example, mutations in an
HXT6/7 hexose transporter and its negative regulator,
MTH1, in glucose-limited yeast chemostat populations are
incompatible [47]. The absence of negative interactions in our
list of significant pairs suggests that we are underpowered to
detect them.

Several recent experimental evolution studies have found
that adaptive mutations often exhibit a global (i.e. not specific
to a particular gene pair) type of negative epistasis, which is
referred to as ‘diminishing returns epistasis’ [55-58]. For
example, we previously demonstrated that beneficial alleles
in gasl and stel2, both approximately 3% fitness effect
mutations, yield only a net approximately 5% benefit when
combined [35]. If diminishing returns epistasis is indeed
widespread, then pairwise interactions between specific

mutations should be detected as deviations of the double-
mutant fitness from the appropriate diminishing returns
null model rather than from a naive additive model. Then,
observing a double-mutant with higher-than-additive fitness,
such as the TRK1/PHO84 double mutant (figure 3), would be
even more surprising compared to the diminishing returns
null than to the additive null, and would provide even stronger
evidence for a gene-specific positive genetic interaction.

Our approach has several important limitations. It suffers
from a high rate of false discoveries (about 60%), at least for
the dataset that we have analysed here. There are at least two
reasons for such high FDR. First, we looked for signatures of
epistasis among pairs of genes in which we observed three or
more independent mutations. We assumed that all observed
mutations in these ‘multi-hit’ genes are beneficial. However,
this may not be the case. We estimate around 12% of the
genes included in this analysis to have been mutated three
or more times simply by chance. These mutations are distrib-
uted uniformly among genotypes and therefore decrease the
signal-to-noise ratio in our data. One way to decrease FDR is
to consider genes with an even higher degree of parallelism.
Of course, this would come at a cost of potentially missing
interesting genetic interactions among less frequently
mutated genes.

Second, high FDR may in fact reflect a real biological
phenomenon. Gene-deletion studies have shown that strong
pairwise epistasis is relatively rare, around 4% if both positive
and negative interactions are counted [6]. Thus, strong pair-
wise genetic interactions among beneficial mutations might
also be rare. Weak epistasis might be more common, but it
is also harder to detect. The highly significant value of the
aggregate Ml statistic in our study suggests that genetic
interactions jointly have affected the outcome of the evol-
utionary process at the genetic level. At the same time, the
difficulty of reliably identifying individual interacting gene
pairs suggests that genetic interactions, rather than being
strong and concentrated in a small number of gene pairs,
are weak and relatively dispersed. The power of our
approach to detect weaker genetic interactions could be
improved with more replicate populations. In our null
model, co-occurrence of two mutations in the same genotype
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happens with probability in the order N~!, where N is the
number of independently evolved genotypes. For example,
the p-value for two genes with three mutations each where
all mutations co-occur in the same three genotypes scales
is N2,

As mentioned above, our method is designed to detect
pairwise genetic interactions. However, we observe that puta-
tive genetic interactions that we identify are clustered in
groups that contain two to seven genes. It is tempting to con-
clude that such clustering is caused by real biological
modules corresponding to physiologically distinct routes of
adaptation. However, some degree of clustering is expected
even if all of epistasis were pairwise and uniformly distribu-
ted among genes. The amount of such spurious clustering
would depend on the strength and prevalence of epistasis
and is hard to estimate. Increasing the number of replicate
populations and reducing the
experiments are likely to alleviate this problem.

duration of evolution

Our approach does not eliminate the need for experimen-
tal validation of putative genetic interactions. However,
current molecular techniques make genetic reconstructions
feasible only for a relatively small number of mutations.
Thus, our approach could serve as an initial filter for narrow-
ing down the set of potentially interesting pairs of mutations
for further experimental validation and investigation.

Our results demonstrate the feasibility of using exper-

imental evolution and genetic parallelism to identify
biologically interesting genetic interactions that might
otherwise be difficult to uncover. In combination with other
approaches, it will facilitate characterization of epistasis
and, more broadly, help us understand the factors driving
patterns
constraint in evolution.
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