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Eukaryotic genomes contain thousands of genes organized into complex

and interconnected genetic interaction networks. Most of our understanding

of how genetic variation affects these networks comes from quantitative-trait

loci mapping and from the systematic analysis of double-deletion (or knock-

down) mutants, primarily in the yeast Saccharomyces cerevisiae. Evolve and

re-sequence experiments are an alternative approach for identifying novel

functional variants and genetic interactions, particularly between non-loss-

of-function mutations. These experiments leverage natural selection to

obtain genotypes with functionally important variants and positive genetic

interactions. However, no systematic methods for detecting genetic inter-

actions in these data are yet available. Here, we introduce a computational

method based on the idea that variants in genes that interact will co-occur

in evolved genotypes more often than expected by chance. We apply this

method to a previously published yeast experimental evolution dataset.

We find that genetic targets of selection are distributed non-uniformly

among evolved genotypes, indicating that genetic interactions had a signifi-

cant effect on evolutionary trajectories. We identify individual gene pairs

with a statistically significant genetic interaction score. The strongest inter-

action is between genes TRK1 and PHO84, genes that have not been

reported to interact in previous systematic studies. Our work demonstrates

that leveraging parallelism in experimental evolution is useful for identifying

genetic interactions that have escaped detection by other methods.

This article is part of the theme issue ‘Convergent evolution in the

genomics era: new insights and directions’.
1. Introduction
Determining the extent to which genetic variants interact to affect phenotypes is

a central challenge in biology. Traditional methods such as quantitative-trait

loci (QTL) mapping and double-deletion analysis have proven useful for iden-

tifying functional variants and genetic interactions in laboratory model systems

such as the yeast Saccharomyces cerevisiae. However, both of these methods have

limitations. QTL mapping provides a robust approach to identifying natural

genetic variants that contribute to complex traits, but most studies are under-

powered to detect genetic interactions. Large studies (with in the order of 103

segregants) have shown that QTL–QTL interactions contribute to a wide

array of complex traits [1–4], but even the largest study to date did not have

the statistical power to identify small-effect interactions [2]. In addition, genetic

linkage makes it difficult in many cases to identify the causal variants

underlying most QTLs.

Systematic phenotypic screens of double deletions/knockdowns in yeast

and other organisms avoid these problems [5–8]. These types of studies have

successfully identified a large number of genetic interactions, particularly

within protein complexes [9]. By design, this approach is limited to detecting

only strong pairwise interactions between loss-of-function variants. Most
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natural variation, however, is not loss of function [10,11], and

thus, a comprehensive picture of genetic interactions will

require tests of interactions between functional variants.

An alternative approach to identifying functionally

important variants and interactions between them is to lever-

age the power of natural selection. When different

populations of the same or different species face the same

environmental challenge, natural selection often finds the

same phenotypic [12–14] or even genetic [15–17] solution

to this challenge. This phenomenon is referred to as conver-

gent or parallel evolution. Thus, the observation of parallel

genetic changes in multiple independent lineages can be

used to identify variants that contribute to functionally

important traits [18–20]. This approach has been successful

in identifying key mutations in pathogen and tumour evol-

ution [21–24]. The idea of convergence or parallelism has

also been used to detect epistasis within genes [25–29] and

more recently also between genes [30] in natural populations.

In this type of analysis, pairs of variants are identified as

genetically interacting if they co-occur in the same genotype

more often than expected by chance. There are three chal-

lenges in using parallelism to detect functional variants and

genetic interactions in natural populations. First, true func-

tional parallelism is confounded by common ancestry.

Second, because we rarely know what selection pressures

drove the evolution of the functional variants, it is difficult

to connect genotype with phenotype. Third, detecting epista-

sis requires many variants to accumulate and is therefore only

feasible in either fast evolving populations or over very long

time-scales.

Evolve and re-sequence experiments offer a complemen-

tary approach for detecting functional variants and genetic

interactions. Like inferences from natural populations, this

approach also relies on selection to find functional variants

and genetic interactions between them. This approach, how-

ever, overcomes problems arising in studies of naturally

evolving populations. Hundreds of replicate microbial popu-

lations can be propagated in identical conditions such that

the selected phenotypes are either known or can be measured

[31]. After hundreds or thousands of generations, entire

populations or individual isolated clones are sequenced,

and adaptive variants are identified by their parallel occur-

rence in replicate lines (e.g. [32–36]). Since replicate

populations evolve independently, overabundance of parallel

variants is a signal of positive selection, which is not con-

founded by common ancestry. Genetic interactions are

known to contribute to adaptive evolution [37], and the

data from evolve and re-sequence experiments must contain

information about these genetic interactions. To the best of

our knowledge, only one study so far has leveraged this

type of data to detect epistasis and demonstrate how it

affected evolutionary trajectories [36]. The challenge is that

large datasets are required to detect overrepresented pairs

of genes that contain interacting variants. However, unlike

in QTL mapping approaches, the number of variants in

experimentally evolved populations can be controlled to

increase statistical power to reveal genetic interactions. At

the same time, evolution in the laboratory, just like evolution

in nature, assesses all types of variants, which in principle

allows us to detect genetic interactions that may not be

revealed in gene-deletion studies.

Here, we present an approach that leverages parallelism

in experimental evolution to detect genetic interactions
between genes that acquire mutations independently across

populations. We detect genetic interactions between pairs of

genes using mutual information [38–40]. This quantity cap-

tures the statistical dependence between the occurrences of

mutations at two specific loci in the same genotype. We use

this approach to analyse a recently published whole-

genome dataset derived from experimentally evolved asexual

populations of yeast. We find that the accumulated mutations

are distributed between genotypes non-uniformly, indicating

that genetic interactions have contributed to adaptive evol-

ution in these laboratory populations. We identify specific

pairs of genes that have acquired mutations in parallel

more often than expected by chance, indicating putative gen-

etic interactions. We experimentally verify that our top-hit

pair, TRK1 and PHO84, shows a positive genetic interaction

when reconstructed in the ancestral background.

2. Material and methods
(a) Sequencing data re-analysis
Evolved mutations used for this analysis were obtained from 92

endpoint clones isolated from 42 populations of 4000 generation

evolved autodiploids, previously reported in Fisher et al. [33].

Populations were grown in rich media in individual wells of

unshaken 96-well plates at 308C and diluted 1 : 1024 every 24 h.

At approximately 60 generation intervals, populations were

cryoarchived in 15% glycerol. We reanalysed the raw sequencing

data to improve annotation quality. All raw data files were

demultiplexed using a custom python script (barcodesplitter.py)

from L. Parsons (Princeton University). Adapter sequences were

trimmed using fastx_clipper (FASTX Toolkit). Reads were then

aligned to a customized W303 genome using BWA v. 0.7.12

[41]. VCFtools was used to filter variants common to all samples

and mating-type-specific polymorphisms (see [33]). Remaining

polymorphisms were then annotated using a strain-background

customized annotation file [42].

(b) Calculating mutual information
We used the evolved mutations generated by reprocessed

sequence data to look for evidence of genetic interactions. To pre-

vent false positives due to common ancestry, only one clone with

the most mutations from each population was included in the

analysis. We then excluded all intergenic and synonymous

mutations. Lastly, to reduce the number of statistical tests, we

looked for genetic interactions only among ‘multi-hit’ genes,

i.e. those in which at least three mutations in independent popu-

lations were detected in the dataset. This was done to reduce

noise by enriching for beneficial mutations. Nevertheless, we

estimate, by simulation controlling for gene length, that 12% of

genes receive three or more mutations by chance alone and are

likely neutral. This reduced dataset includes 113 ‘multi-hit’

genes from 46 independently evolved genotypes.

For all 6328 pairwise combinations of multi-hit genes, we cal-

culated the mutual information statistic. To do so, we model an

evolved genotype with a series of (possibly non-independent)

Bernoulli random variables si with i ¼ 1, 2, . . . , K, where K ¼
113, the total number of genes where mutations can possibly

occur; si takes value 1 if a mutation occurs (in the data) in

gene i and it takes values 0 if it does not occur. We first estimate

the marginal probability of a mutation occurring in gene i as

P(si ¼ 1) ¼ CM

XN

g¼1

~Mgi: ð2:1Þ

Here, ~Mgi ¼ Mgi þ 1 and Mgi ¼ 1 if mutation in gene i is present

in genotype g in the data. We regularize our estimates by adding
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a pseudocount 1 ¼ 1=M, where M is equal to the total number of

mutations in the dataset [43]. Our results are robust with respect

to the choice of 1 (see below). The sum is taken over all N ¼ 46

genotypes and CM ¼ 1=N(1þ 1) is the normalization constant.

The probability of a mutation not occurring in gene i is then

P(si ¼ 0) ¼ 1� P(si ¼ 1). We also estimate the joint probability

distribution P(si,sj) for each gene pair (i,j ) as follows:

P(si ¼ 1, sj ¼ 1) ¼ CJ

XN

g¼1

~Mgi ~Mgj, ð2:2Þ

P(si ¼ 0, sj ¼ 1) ¼ CJ

XN

g¼1

(1þ 1� ~Mgi) ~Mgj, ð2:3Þ

P(si ¼ 1, sj ¼ 0) ¼ CJ

XN

g¼1

~Mgi(1þ 1� ~Mgj) ð2:4Þ

and P(si ¼ 0, sj ¼ 0) ¼ CJ

XN

g¼1

(1þ 1� ~Mgi)(1þ 1� ~Mgj),

ð2:5Þ

where CJ ¼ 1=N(1þ 1)2. We use these estimates of joint prob-

abilities to estimate the mutual information statistic MIij

between random variables si and sj as

MIij ¼
X

x,y[{0,1}

P(si ¼ x, sj ¼ y) log2

P(si ¼ x, sj ¼ y)

P(si ¼ x)P(sj ¼ y)
: ð2:6Þ

The aggregate mutual information statistic MItot for the full data-

set is then calculated as

MItot ¼
XK�1

i¼1

XK

j¼iþ1

MIij: ð2:7Þ

(c) Generating null datasets
To obtain the null distributions for the individual MIij statistics

and for the aggregate MItot statistic, we generated ‘null’ datasets

that are structurally identical to our real dataset, but in which the

mutations are distributed randomly and independently across

genotypes with the same marginal probabilities as in the real

data. Specifically, in each ‘null’ dataset, we generated N ¼ 46

genotypes by randomly and independently drawing each value

Mgi, g ¼ 1, . . . , N, i ¼ 1, . . . , K from the Bernoulli distribution

with estimated marginal success probability P(si ¼ 1) for each

gene i. This method preserves the average numbers of mutations

per gene and per clone.

To obtain the null distributions for each MIij and MItot, we gen-

erated 100 000 ‘null’ datasets, and calculated all MIij and MItot

statistics for each ‘null’ dataset as described above. We then esti-

mated the p-value for all MIij and MItot and obtained nominally

significant pairs of genes at different significance thresholds. Since

the MIij statistics are not independent, we estimated the false discov-

ery rate (FDR) and the p-values for the observed number of

nominally significant pairs from our ‘null’ datasets [27].

(d) Strain construction
Evolved alleles of the most significant gene pair, PHO84 and

TRK1, were reconstructed into the ancestral background using

CRISPR–Cas9 allele swaps. We first constructed plasmids start-

ing from pML104 (Addgene 67638), which constitutively

expresses Cas9 and a guide RNA (gRNA). We designed

gRNAs to target one site in PHO84 (50-CCCGTA

GAAAGCAACATCTAA-30) and two sites in TRK1 (50-

TTTTGGGTTCAAATCATCGAA-30 and 50-GGAGAACAACTCC

TACTCGAC-30). Plasmids were transformed into our ancestral

background (yGIL1298: MATa, ade2-1, CAN1, his3-11, leu2-3,

112, trp1-1, URA3, bar1D::ADE2, hmlaD::LEU2, GPA1::KanMX,

ura3D::PFUS1-yEVenus) along with a 500 bp linear repair
template (gBlock, IDT) encoding the appropriate evolved allele

( pho84-A1071C, trk1-A733G and trk1-C1353G) as well as a

synonymous PAM site change. Transformants were genotyped

to confirm successful integration of each mutant allele. The

pho84-A1071C mutant strain was backcrossed to yGIL432

(MATa, GPA1::NatMX, otherwise isogenic to yGIL1298) to

move the pho84-A1071C allele to the MATa background. This

pho84-A1071C MATa strain was crossed to yGIL1298 to generate

heterozygous pho84-A1071C mutants, and to each of two tkr1
mutants to generate heterozygous double mutants. Heterozy-

gous single trk1 mutants were created by crossing correct

transformants to yGIL432. All MATa/a diploids were then con-

verted to MATa/a to correspond with the autodiploid

background in which the mutations arose by transforming

diploids with pGIL088, which contains a galactose-inducible HO
homing endonuclease, as reported in Fisher et al. [33].

(e) Fitness assay and interaction analysis
Fitness assays were performed as described previously [33].

Briefly, mutant cultures were mixed 1 : 1 with an autodiploid ver-

sion of the ancestral strain (yGIL1064) labelled with ymCitrine at

URA3. Cultures were propagated in a 96-well plate in an identi-

cal fashion to the evolution experiment for 50 generations. At

10-generation intervals, saturated cultures were sampled for

flow cytometry. Analysis of flow cytometry data was performed

with FlowJo 10.3. The selective coefficient was calculated as the

slope of the best-fit line of the natural log of the ratio between

query and reference strains against time.

Selection coefficients were measured for two technical repli-

cates each of four biological replicates of pho84-A1071C and

eight biological replicates of the remaining four query genotypes

(trk1-A733G, trk1-C1353G, pho84-A1071C/trk1-A733G and

pho84-A1071C/trk1-A1353G). One reconstructed clone had an

abnormally high fitness, likely due to secondary mutations intro-

duced during transformation, and was removed from the analysis.

There was no significant difference in fitness between the two

single trk1 alleles (t28¼ 0.95, p ¼ 0.35) or between the two

double mutants (t28¼ 21.087, p¼ 0.29), so data for these geno-

types were pooled. The expected additive fitness distribution of

the double mutant was calculated by adding the mean selection

coefficients and propagating the standard deviation of trk1 and

pho84 single mutants. A one-tailed two-sample t-test was used

to test for deviation from additive expectation.

( f ) Network and clustering analysis
Hierarchical clustering and heatmap generation were done using

the pheatmap R package [44]. Mutual information matrices were

clustered by rows and columns using a Euclidean distance

matrix. Subclusters shown were identified by trimming row

and column dendrograms to five groups and identifying the

four subclusters containing less than 20 genes. The significant

pair network was generated via the R igraph package [45].
3. Results
(a) Identifying putative genetic interactions
We set out to look for genetic interactions between beneficial

mutations that arose in a previously published yeast evol-

ution experiment for which whole-genome sequencing data

are publicly available [33]. In this experiment, 46 replicate

autodiploid yeast populations evolved in the same laboratory

environment for 4000 generations [33]. Using a custom bio-

informatics pipeline (Methods), we identified 3835 unique

new mutations that arose during evolution. We found 113

‘multi-hit’ genes, i.e. genes in which a non-synonymous or
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a nonsense mutation was discovered in at least three indepen-

dent populations. Since we expect to find only 13.5 of such

genes by chance if mutations were distributed randomly

across the genome, multi-hit genes must be highly enriched

for targets of selection.

We asked whether any pairs of multi-hit genes occurred

in our data more or less often than expected by chance.

Such over- or underrepresentation would indicate parallel

evolution driven by genetic interactions. We calculated the

aggregate mutual information statistic, MItot (Methods),

which serves as an overall measure of mutational non-

independence in our dataset, and found that MItot ¼ 87.7

bits. We compared this value to the null distribution

generated by randomly and independently distributing

mutations among evolved genotypes 105 times (see Methods)

and found that the observed value was significantly larger

than expected by chance ( p , 10– 3; figure 1; electronic sup-

plementary material, figure S1). On average, the knowledge

that a mutation in one gene is present in a given genotype

provides a very small amount (87.7/6328 ¼ 0.014 bits) of

information about the presence of a mutation in any other

specific gene. Nevertheless, the fact that mutated genes are

distributed non-uniformly across evolved genotypes indi-

cates that genetic networks subtly but significantly affected

the mutational trajectories in our evolving populations.

Our estimates of mutual information depend on the value

of the pseudocount parameter 1 (see Methods). We re-ran our

analysis (albeit with 10 simulations instead of 105) at varying

values of 1 between 0.0002 (1 ¼ 0:1=M) and 0.004 (1 ¼ 2=M)

and found that our main result is robust with respect

to the choice of 1 (electronic supplementary material,

figure S2).

Next, we compared the mutual information statistic MIij

for each gene pair (i,j ) in the dataset to its respective null dis-

tribution (see Methods; electronic supplementary material,

figure S3). We identified a significant genetic interaction

between two genes if the p-value for their MIij was less

than 0.003. At this cut-off, we expect to observe 18.8 interact-

ing gene pairs under our null model, but in fact we observe

33 (FDR of 0.57) and this excess is highly significant ( p ,

0.005; electronic supplementary material, figure S4).

Thirty-three significant gene pairs comprise 42 unique

genes (electronic supplementary material, table S1).

Interactions between functional variants might be

expected to exhibit allele specificity. We examined the

identity of independently derived mutations in the top five

most significant putative interactions (electronic supplemen-

tary material, table S2). Three of the nine genes in the top

five pairs showed evidence of repeated loss of function as

indicated by PROVEAN score (IRA2, LTE1, WHI2) [46].

Mutations in the remaining six genes show a mix of predicted

effects. We examined the positions of mutations within each

gene to look for patterns of site-specific variation. We

found that the distribution of mutations across coding

sequences was consistent with the uniform null hypothesis.

(b) Experimental verification of genetic interaction
between mutations in PHO84 and TRK1

Despite the high FDR, our epistasis analysis suggests that

mutations in the top significant pair of genes, PHO84 and

TRK1 (nominal p , 10– 5), exhibit a true genetic interaction.

Mutations in these two genes co-occurred in the same
genotype in our data three times and never exhibited a

higher value of mutual information in any of the 100 000

simulations. When examining the complete dataset, including

all clones descending from each population, we found that a

mutation in the PHO84 gene precedes a mutation in TRK1 in

at least one population and that all populations with a non-

synonymous mutation in PHO84 allele acquire a TRK1
mutation (electronic supplementary material, figure S5).

To experimentally validate this positive genetic inter-

action, we reconstructed one allele of pho84 and two alleles

of trk1 in the ancestral background both as single mutants

and as double pho84/trk1 mutants. All mutations were con-

structed as heterozygotes—the state in which they are

maintained in the evolution experiment—and assayed for fit-

ness. The mutant pho84 and trk1 alleles conferred small but

measurable fitness benefits (0.009+0.001 s.e. for pho84 and

0.003+0.001 s.e. for trk1). We found that the fitness of the

pho84/trk1 double mutant (0.015+0.001 s.e.) was higher

than the expectation based on the sum of fitnesses of single

mutants (0.013+0.001 s.e., figure 2), although the difference

was only marginally significant (t58 ¼ 1.74, p ¼ 0.043).

(c) Structure of genetic interaction networks
We found that the set of putatively interacting genes is highly

interconnected. The most significant 33 gene pairs consist of

eight modules that contain at least three genes each and five

isolated gene–gene interaction pairs (figure 3). The three lar-

gest modules encompass 42% of all candidate significant

interactions. We performed hierarchical clustering on MIij

and found that this matrix contains multiple small but tightly

connected blocks (figure 4). On average, mutual information

between any two genes within a block was eight times

higher than between a random pair of genes (0.098 bits

versus 0.012 bits). Notably, these blocks largely overlapped

with the modules observed among putatively interacting

pairs. This suggests that genetic interactions, rather than

being exclusively strong pairwise interactions, are often

dispersed among small networks of interacting genes.
4. Discussion
Even the simplest free-living microorganisms encode thou-

sands of genes organized into complex and interconnected
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networks that collectively determine the organism’s fitness.

These genetic interaction networks constrain evolution such

that populations evolving in identical conditions often find

similar genetic solutions, both in nature and in the laboratory

(e.g. [14,36,47]). Here, we developed a method, based on

mutual information, that exploits genetic parallelism observed

in microbial evolution experiments to infer genetic interactions

between loci that acquired mutations in independent
populations. With this method, we found that genetic inter-

actions had an overall significant effect on mutational

trajectories of evolved populations. We also identified 33

gene pairs (at FDR of 0.57) that exhibit the strongest genetic

interactions in our dataset. We provide experimental support

for one of these interactions, between genes PHO84 and TRK1.

Our method for detecting genetic interactions comp-

lements existing approaches. Most of our understanding of
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genetic interactions comes from the systematic analysis of

double-deletion/knockdown mutations [5,6,8,9,47–52]. By

design, these approaches query only loss-of-function

mutations, which represent less than 5% of natural variation

in both yeast and humans [10,11]. By contrast, our approach

can detect pairwise epistasis between all classes of beneficial

variants, including gain-of-function mutations, mutations in

essential genes and regulatory mutations that would be

missed in gene-deletion studies. Indeed, out of the 33 most sig-

nificant gene pairs, only one genetic interaction (between SIN3
and TRK1) was known previously [6]. The most significant

interaction discovered here is between genes TRK1 and

PHO84. TRK1 encodes a high-affinity potassium transporter

and PHO84 encodes a high-affinity phosphate transporter.

The biological cause of their interaction is unclear, although

there is evidence of crosstalk between potassium and

phosphate import [53,54].

While gene-deletion studies are particularly good at

detecting strong negative pairwise interactions between dele-

terious mutations, such as synthetic lethality (reviewed in

[9]), our method identifies primarily positive interactions

between pairs of selectively accessible mutations. In theory,

our approach could also capture negative interactions, but

this would require observing an absence of certain muta-

tional combinations more often than expected by chance.

Such mutational incompatibilities have been observed in

evolution experiments [36,47]; for example, mutations in an

HXT6/7 hexose transporter and its negative regulator,

MTH1, in glucose-limited yeast chemostat populations are

incompatible [47]. The absence of negative interactions in our

list of significant pairs suggests that we are underpowered to

detect them.

Several recent experimental evolution studies have found

that adaptive mutations often exhibit a global (i.e. not specific

to a particular gene pair) type of negative epistasis, which is

referred to as ‘diminishing returns epistasis’ [55–58]. For

example, we previously demonstrated that beneficial alleles

in gas1 and ste12, both approximately 3% fitness effect

mutations, yield only a net approximately 5% benefit when

combined [35]. If diminishing returns epistasis is indeed

widespread, then pairwise interactions between specific
mutations should be detected as deviations of the double-

mutant fitness from the appropriate diminishing returns

null model rather than from a naive additive model. Then,

observing a double-mutant with higher-than-additive fitness,

such as the TRK1/PHO84 double mutant (figure 3), would be

even more surprising compared to the diminishing returns

null than to the additive null, and would provide even stronger

evidence for a gene-specific positive genetic interaction.

Our approach has several important limitations. It suffers

from a high rate of false discoveries (about 60%), at least for

the dataset that we have analysed here. There are at least two

reasons for such high FDR. First, we looked for signatures of

epistasis among pairs of genes in which we observed three or

more independent mutations. We assumed that all observed

mutations in these ‘multi-hit’ genes are beneficial. However,

this may not be the case. We estimate around 12% of the

genes included in this analysis to have been mutated three

or more times simply by chance. These mutations are distrib-

uted uniformly among genotypes and therefore decrease the

signal-to-noise ratio in our data. One way to decrease FDR is

to consider genes with an even higher degree of parallelism.

Of course, this would come at a cost of potentially missing

interesting genetic interactions among less frequently

mutated genes.

Second, high FDR may in fact reflect a real biological

phenomenon. Gene-deletion studies have shown that strong

pairwise epistasis is relatively rare, around 4% if both positive

and negative interactions are counted [6]. Thus, strong pair-

wise genetic interactions among beneficial mutations might

also be rare. Weak epistasis might be more common, but it

is also harder to detect. The highly significant value of the

aggregate MItot statistic in our study suggests that genetic

interactions jointly have affected the outcome of the evol-

utionary process at the genetic level. At the same time, the

difficulty of reliably identifying individual interacting gene

pairs suggests that genetic interactions, rather than being

strong and concentrated in a small number of gene pairs,

are weak and relatively dispersed. The power of our

approach to detect weaker genetic interactions could be

improved with more replicate populations. In our null

model, co-occurrence of two mutations in the same genotype
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happens with probability in the order N – 1, where N is the

number of independently evolved genotypes. For example,

the p-value for two genes with three mutations each where

all mutations co-occur in the same three genotypes scales

is N – 3.

As mentioned above, our method is designed to detect

pairwise genetic interactions. However, we observe that puta-

tive genetic interactions that we identify are clustered in

groups that contain two to seven genes. It is tempting to con-

clude that such clustering is caused by real biological

modules corresponding to physiologically distinct routes of

adaptation. However, some degree of clustering is expected

even if all of epistasis were pairwise and uniformly distribu-

ted among genes. The amount of such spurious clustering

would depend on the strength and prevalence of epistasis

and is hard to estimate. Increasing the number of replicate

populations and reducing the duration of evolution

experiments are likely to alleviate this problem.

Our approach does not eliminate the need for experimen-

tal validation of putative genetic interactions. However,

current molecular techniques make genetic reconstructions

feasible only for a relatively small number of mutations.

Thus, our approach could serve as an initial filter for narrow-

ing down the set of potentially interesting pairs of mutations

for further experimental validation and investigation.
Our results demonstrate the feasibility of using exper-

imental evolution and genetic parallelism to identify

biologically interesting genetic interactions that might

otherwise be difficult to uncover. In combination with other

approaches, it will facilitate characterization of epistasis

and, more broadly, help us understand the factors driving

patterns of parallelism, diversification and genomic

constraint in evolution.
Data accessibility. Electronic supplementary material, dataset 1 contains
the reduced dataset used for pairwise epistasis detection. Mutual
information and simulation code is archived on GitHub as a release:
https://github.com/LangYeastEvoLab/Detect_Parallel_Epistasis;
doi:10.5281/zenodo.1938607.

Authors’ contributions. K.J.F. and G.I.L. conceived of the study. K.J.F., S.K.
and G.I.L. conceptualized mutual information analysis and simu-
lations. K.J.F. wrote the code. K.J.F., S.K. and G.I.L. analysed the
data. K.J.F., S.K. and G.I.L. wrote the paper.

Competing interests. We have no competing interests.

Funding. This research was supported by grants to G.I.L. from the NIH
(R01GM127420) and to S.K. from the BWF Career Award at Scientific
Interface, the Alfred P. Sloan Foundation and the Hellman
Foundation.

Acknowledgements. We thank D. Aggeli and S. Buskirk and members of
the Lang Lab for comments on the manuscript.
References
1. Bloom JS, Ehrenreich IM, Loo WT, Lite TL, Kruglyak
L. 2013 Finding the sources of missing heritability
in a yeast cross. Nature 494, 234 – 237. (doi:10.
1038/nature11867)

2. Bloom JS, Kotenko I, Sadhu MJ, Treusch S, Albert
FW, Kruglyak L. 2015 Genetic interactions contribute
less than additive effects to quantitative trait
variation in yeast. Nat. Commun. 6, 8712. (doi:10.
1038/ncomms9712)

3. Huang W et al. 2012 Epistasis dominates the
genetic architecture of Drosophila quantitative traits.
Proc. Natl Acad. Sci. USA 109, 15 553 – 15 559.
(doi:10.1073/pnas.1213423109)

4. Wilkening S et al. 2014 An evaluation of high-
throughput approaches to QTL mapping in
Saccharomyces cerevisiae. Genetics 196, 853 – 865.
(doi:10.1534/genetics.113.160291)

5. Babu M et al. 2014 Quantitative genome-wide
genetic interaction screens reveal global epistatic
relationships of protein complexes in Escherichia
coli. PLoS Genet. 10, e1004120. (doi:10.1371/
journal.pgen.1004120)

6. Costanzo M, et al. 2016 A global genetic interaction
network maps a wiring diagram of cellular function.
Science 353, aaf1420. (doi:10.1126/science.aaf1420)

7. Lehner B, Crombie C, Tischler J, Fortunato A, Fraser
AG. 2006 Systematic mapping of genetic
interactions in Caenorhabditis elegans identifies
common modifiers of diverse signaling pathways.
Nat. Genet. 38, 896. (doi:10.1038/ng1844)

8. Tong AH et al. 2004 Global mapping of the yeast
genetic interaction network. Science 303, 808 – 813.
(doi:10.1126/science.1091317)
9. Baryshnikova A et al. 2010 Quantitative analysis of
fitness and genetic interactions in yeast on a
genome scale. Nat. Methods 7, 1017 – 1024.
(doi:10.1038/nmeth.1534)

10. Bergstrom A et al. 2014 A high-definition view of
functional genetic variation from natural yeast
genomes. Mol. Biol. Evol. 31, 872 – 888. (doi:10.
1093/molbev/msu037)

11. Saleheen D et al. 2017 Human knockouts and
phenotypic analysis in a cohort with a high rate of
consanguinity. Nature 544, 235 – 239. (doi:10.1038/
nature22034)

12. Hagen DW, Gilbertson LG. 1972 Geographic
variation and environmental selection in
Gasterosteus aculeatus L. in the Pacific northwest,
America. Evolution 26, 32 – 51. (doi:10.1111/j.1558-
5646.1972.tb00172.x)

13. O’Quin KE, Hofmann CM, Hofmann HA, Carleton KL.
2010 Parallel evolution of opsin gene expression in
African cichlid fishes. Mol. Biol. Evol. 27,
2839 – 2854. (doi:10.1093/molbev/msq171)

14. Protas ME, Hersey C, Kochanek D, Zhou Y,
Wilkens H, Jeffery WR, Zon LI, Borowsky R, Tabin CJ.
2006 Genetic analysis of cavefish reveals
molecular convergence in the evolution of
albinism. Nat. Genet. 38, 107 – 111.
(doi:10.1038/ng1700)

15. Glazer AM, Cleves PA, Erickson PA, Lam AY, Miller
CT. 2014 Parallel developmental genetic features
underlie stickleback gill raker evolution. EvoDevo 5,
19. (doi:10.1186/2041-9139-5-19)

16. McCracken K et al. 2009 Parallel evolution in the
major haemoglobin genes of eight species of
Andean waterfowl. Mol. Ecol. 18, 3992 – 4005.
(doi:10.1111/j.1365-294X.2009.04352.x)

17. Zhen Y, Aardema ML, Medina EM, Schumer M,
Andolfatto P. 2012 Parallel molecular evolution in
an herbivore community. Science 337, 1634 – 1637.
(doi:10.1126/science.1226630)

18. Rey C, Lanore V, Veber P, Guéguen L, Lartillot N,
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