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Abstract

A common misconception is that evolution is a linear “march of progress,” where each
organism along a line of descent is more fit than all those that came before it. Rejecting this
misconception implies that evolution is nontransitive: a series of adaptive events will, on occasion,
produce organisms that are less fit compared to a distant ancestor. Here we identify a nontransitive
evolutionary sequence in a 1,000-generation yeast evolution experiment. We show that
nontransitivity arises due to adaptation in the yeast nuclear genome combined with the stepwise
deterioration of an intracellular virus, which provides an advantage over viral competitors within
host cells. Extending our analysis, we find that nearly half of our ~140 populations experience
multilevel selection, fixing adaptive mutations in both the nuclear and viral genomes. Our results
provide a mechanistic case-study for the adaptive evolution of nontransitivity due to multilevel

selection in a 1,000-generation host/virus evolution experiment.

Introduction

Adaptive evolution is a process in which selective events result in the replacement of less-fit
genotypes with a more fit ones. Intuitively, a series of selective events, each improving fitness relative to
the immediate predecessor, should translate into a cumulative increase in fitness relative to the ancestral
state. However, whether or not this is borne out over long evolutionary time scales has long been the
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subject of debate (Ruse 1993, Dawkins 1997, Gould 1997, Shanahan 2000). The failure to identify broad
patterns of progress over evolutionary time scales—despite clear evidence of selection acting over
successive short time intervals—is what Gould referred to as “the paradox of the first tier (Gould 1985).”
This paradox implies that evolution exhibits nontransitivity, a property that is best illustrated by the
Penrose staircase and the Rock-Paper-Scissors game. The Penrose staircase is a visual illusion of
ascending sets of stairs that form a continuous loop such that—although each step appears higher than the
last—no upward movement is realized. In the Rock-Paper-Scissors game each two-way interaction has a
clear winner (paper beats rock, scissors beats paper, and rock beats scissors), yet due to the nontransitivity
of these two-way interactions, no clear hierarchy exists among the three.

In ecology, nontransitive interactions among extant species are well-documented as contributors
to biological diversity and community structure (Kerr et al. 2002, Kérolyi et al. 2005, Laird and Schamp
2006, Reichenbach et al. 2007, Menezes et al. 2019) and arise by way of resource (Sinervo and Lively
1996, Precoda et al. 2017) or interference competition (Kirkup and Riley 2004). First put forward in the
1970s (Gilpin 1975, Jackson and Buss 1975, May and Leonard 1975, Petraitis 1979), the importance of
nontransitivity in ecology has garnered extensive theoretical and experimental consideration over the last
half century (e.g. (Sinervo and Lively 1996, Kerr et al. 2002, Allesina and Levine 2011, Rojas-Echenique
and Allesina 2011, Soliveres et al. 2015, Liao et al. 2019).

What is unknown is whether nontransitive interactions arise for direct descendants along a line of
genealogical succession. This is the crux of Gould’s paradox and has broad implications for our
understanding of evolutionary processes. For instance, if an evolved genotype is found to be less fit in
comparison to a distant ancestor, the adaptive landscape upon which the population is evolving may not
contain true fitness maxima (Barrick and Lenski 2013, Van den Bergh et al. 2018) and, more broadly,
directionality and progress may be illusory (Gould 1996). Testing the hypothesis that nontransitive
interactions arise along lines of genealogical descent, however, is not possible in natural populations
because it requires our ability to directly compete an organism against its immediate predecessor as well
as against its extinct genealogical ancestors. Fortunately, laboratory experimental evolution, in which
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populations are preserved as a “frozen fossil record,” affords us with the unique opportunity to test for
nontransitivity along a genealogical lineage by directly competing a given genotype against the extant as
well as the extinct.

An early study of laboratory evolution of yeast in glucose-limited chemostats appeared to
demonstrate that nontransitive interactions arise along a line of genealogical descent (Paquin and Adams
1983). However, the specific events that led to nontransitivity in this case are unknown, and it is likely the
case that the authors were measuring interactions between contemporaneous lineages in a population,
rather than individuals along a direct line of genealogical descent, as they report (see Discussion). Indeed,
adaptive diversification is common in experimental evolution due to spatial structuring (Rainey and
Travisano 1998, Frenkel et al. 2015) and metabolic diversification (Paquin and Adams 1983, Helling et
al. 1987, Turner et al. 1996, Spencer et al. 2008, Kinnersley et al. 2014), and is typically maintained by
negative frequency-dependent selection, in which rare genotypes are favored. Collectively this work
reinforces theory and observational evidence on the power of ecological nontransitivity as a driver and
maintainer of diversity but is silent as to whether genealogical succession can also be nontransitive.

Here we determine the sequence of events leading to the evolution of nontransitivity in a single
yeast population during a 1,000-generation evolution experiment. We show that nontransitivity arises
through multilevel selection involving both the yeast nuclear genome and the population of a vertically-
transmitted virus. Many fungi, including the yeast Saccharomyces cerevisiae are host to non-infectious,
double-stranded RNA “killer” viruses (Wickner 1976, Schmitt and Breinig 2002, Schmitt and Breinig
2006, Rowley 2017). Killer viruses produce a toxin that kills non-Kkiller containing yeasts. The K1 toxin
gene contains four subunits (3, a, y, B), which are post-translationally processed and glycosylated to
produce an active two-subunit (o, B) secreted toxin (Bostian et al. 1983). Immunity to the toxin is
conferred by the pre-processed version of the toxin, thus requiring cells to maintain the virus for
protection. We show that nontransitivity arises due to multilevel selection: adaptation in the yeast nuclear

genome and the simultaneous stepwise deterioration of the killer virus. By expanding our study of host-
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virus genome evolution to over 100 additional yeast populations, we find that multilevel selection, and
thus the potential for the evolution of nontransitive interactions, is a common occurrence given the

conditions of our evolution experiment.

Results

Evolution of nontransivity along a line of genealogical descent

Previously we evolved ~600 haploid populations of yeast asexually for 1,000 generations in rich
glucose medium (Lang et al. 2011). We characterized extensively the nuclear basis of adaptation for a
subset of these populations through whole-genome whole-population time-course sequencing (Lang et al.
2013) and/or fitness quantification of individual mutations (Buskirk et al. 2017).

For one population (BYS1-D08) we were surprised to observe that a 1,000-generation clone lost
in direct competition with a fluorescently-labeled version of the ancestor. To test the hypothesis that a
nontransitive interaction arose during the adaptive evolution of this population, we isolated individual
clones from three timepoints: Generation 0 (Early), Generation 335 (Intermediate), and Generation 1,000
(Late) (Figure 1A). These timepoints were chosen, in part, to coincide with the completion of selective
sweeps in the population (Lang et al. 2013). The Intermediate clone was isolated following a selective
sweep that fixes three nuclear mutations including a beneficial mutation in YURL. The Late clone was
isolated following three more selective sweeps that fix an additional ten nuclear mutations including a
beneficial mutation in STE4.

We performed pairwise competition experiments between the Early, Intermediate, and Late
clones at multiple starting frequencies. We find that the Intermediate clone is 3.8% more fit relative to the
Early clone and that the Late clone is 1.2% more fit relative to the Intermediate clone (Figure 1B, left
panel). The yurl mutation in the Intermediate clone and the ste4 mutation in the late clone were
previously estimate to provide a 4.6% + 0.5% and 2.6% + 0.4% fitness advantage, respectively (Buskirk

et al. 2017), consistent with the fitness differences between the Intermediate and Early clones and the Late
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and Intermediate clones. The expectation, assuming additivity, is that the Late clone will be more fit than
the Early clone, by roughly 5.0%. Surprisingly, we find that the Late clone is less fit than expected, to the
extent that it often loses in pairwise competition with the Early clone (Figure 1B, left panel). Furthermore,
the interaction between the Early and Late clones exhibits positive frequency-dependent selection, thus
creating a bi-stable system where the fitness disadvantage of the Late clone can be overcome if it starts
above a certain frequency relative to the Early clone (Figure 1-figure supplement 1).

Evolution of nontransitivity is associated with changes to the killer virus

Positive frequency-dependent selection is rare in experimental evolution and can only arise
through a few known mechanisms. It has been observed previously in yeast that harbor Killer viruses
(Greig and Travisano 2008), which are dsRNA viruses that encode toxin/immunity systems. Using a well-
described halo assay (Woods and Bevan 1968), we find that the ancestral strain of our evolved
populations exhibits the phenotype expected of yeast that harbor the killer virus: it inhibits growth of a
nearby sensitive strain and resists killing by a known killer strain (Figure 1-figure supplement 2).

We asked if the observed nontransitivity in the BYS1-D08 lineage could be explained by
evolution of the killer phenotype. Phenotyping of the isolated clones revealed that the Intermediate clone
no longer exhibits Killing ability (K'I*) and that the Late clone possesses neither killing ability nor
immunity (K'I°, Figure 1A, Figure 1-figure supplement 3). Killer toxin has been shown to impart
frequency-dependent selection in structured environments due to a high local concentration of secreted
toxin (Greig and Travisano 2008) We hypothesized that a stepwise loss of killing ability followed by loss
of immunity, along with the acquisition of beneficial yurl and ste4 nuclear mutations, were responsible
for the frequency-dependent and nontransitive interaction between Early and Late clones.

To determine if killer toxin production by the Early clone is necessary for it to outcompete the
toxin-susceptible Late clone, we repeated the competition between the Early and Late clones using a
virus-cured version of the Early clone. We find that removing the virus from the Early clone abolishes the
frequency-dependent fitness advantage of the Early clone; the Late clone is 4.3% more fit than the cured
Early clone at all frequencies (Figure 1B, right panel) due to the presence of adaptive mutations in the
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nuclear genome of the Late clone. Therefore the presence of killer virus in the Early clone, and the
subsequent loss of Killer virus-associated phenotypes in the Late clone, were necessary for the evolution
of frequency-dependence and nontransitivity.

To determine if viral evolution alone is sufficient to account for the observed fitness gains in
nontransitive interactions, we focused on the first step in the evolutionary sequence: the transition from
the Early clone to Intermediate clone. We transferred the killer virus from the Intermediate clone to the
cured Early clone and assayed fitness relative to the Early clone. Because the virus from the Intermediate
clone no longer produces toxin, we suspected that it may provide a fitness benefit to the host. However,
we find that the evolved killer virus from the Intermediate clone confers no significant effect on host
fitness compared to the killer virus from the Early clone (Figure 1B, right panel). This shows that the
fitness benefit of the Intermediate clone relative to the Early clone is due to adaptation in the nuclear
genome. Taken together these experiments show that the sequence of events leading to the evolution of

nontransitivity involves changes to both the host and viral genomes.

Changes to killer-associated phenotypes are common under our experimental conditions

To determine the extent of killer phenotype evolution across all populations, we assayed the killer
phenotype of 142 populations that were founded by a single ancestor and propagated at the same
bottleneck size as BYS1-D08 (Lang et al. 2011). We find that approximately half of all populations
exhibit a loss or weakening of killing ability by Generation 1,000, with ~10% of populations exhibit
neither killing ability nor immunity (Figure 2). Of note, we did not observe loss of immunity without loss
of killing ability, an increase in killing ability or immunity, or reappearance of killing ability or immunity
once it was lost from a population (Figure 2-figure supplement 1), apart from the noise associated with
scoring of population-level phenotypes. Several populations (i.e. BYS2-B09 and BYS2-B12) lost both
killing ability and immunity simultaneously, suggesting that a single event can cause the loss of both the

killer phenotypes.
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Mutations in nuclear genes can affect Killer-associated phenotypes. The primary receptors of the
K1 killer toxin are B-glucans in the yeast cell wall (Pieczynska et al. 2013). We observe a statistical
enrichment of mutations in genes involved in B-glucan biosynthesis (6-fold Gene Ontology (GO)
Biological Process enrichment, P<0.0001). Furthermore, of the 714 protein-coding mutations dispersed
across 548 genes, 40 occur within 11 of the 36 genes (identified by (Pagé et al. 2003)) that, when deleted,
confer a high level of resistance to the K1 toxin (y’=18.4, df=1, P=1.8x107). Nevertheless, the presence of
mutations in nuclear genes that have been associated with high levels of resistance is not sufficient to

account for the loss of killing ability (x*=1.037, df=1, P=0.309) or immunity (x°=0.103, df=1, P=0.748).

Standing genetic variation and de novo mutations drive phenotypic change

We sequenced viral genomes from our ancestral strain and a subset of yeast populations (n=67) at
Generation 1,000 (Figure 3). We find that our ancestral strain, which was derived from the common lab
strain W303-1a, contains the M1-type killer virus (encoding the K1-type killer toxin) with only minor
differences from previously sequenced strains (Figure 3-figure supplement 1). Our ancestral strain also
possesses the L-A helper virus, which supplies the RNA-dependent RNA polymerase and capsid protein
necessary for the Killer virus, a satellite virus, to complete its life cycle (Ribas and Wickner 1992). We
sequenced viral genomes from 57 populations that change killer phenotype and 10 control populations
that retained the ancestral killer phenotypes. Viral genomes isolated from populations that lost killing
ability possess 1-3 mutations in the M1 coding sequence — most being missense variants (Figure 3A). In
contrast, only a single mutation, synonymous nonetheless, was detected in M1 across the 10 control
populations that retained the killer phenotype (x*=59.3, df=1, P=1.4x10%). The correlation between the
presence of mutations in the viral genome and the loss of killing ability is strong evidence that viral
mutations are responsible for the changes in killer phenotypes. We estimate that by Generation 1,000 half
of all populations have fixed viral variants that alter Killer phenotypes (for comparison, IRA1, the most

common nuclear target, fixed in ~25% of populations over the same time period).
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Of the 57 populations that lost killing ability, 42 fixed one of three single nucleotide
polymorphisms, resulting in amino acid substitutions D106G, D253N, and 1292M and observed 13, 14,
and 15 times, respectively (Supplementary File 1). Given their prevalence, these polymorphisms likely
existed at low frequency in the shared ancestral culture (indeed, we can detect one of the common
polymorphisms, D106G, in individual clones at the Early time point, indicating that this mutation was
heteroplasmic in cells of the founding population). Killer phenotypes are consistent across populations
that fixed a particular ancestral polymorphism (Supplementary File 1).

In addition to the three ancestral polymorphisms, we detect 34 putative de novo point mutations
that arose during the evolution of individual populations (Supplementary File 1). Mutations are localized
to the K1 coding sequence, scattered across the four encoded subunits, and skewed towards missense
mutations relative to nonsense or frameshift (Figure 3B). Fourteen of the seventy-eight identified
mutations are predicted to fall at or near sites of protease cleavage or post-translational modification
necessary for toxin maturation. Overall, however, the K1 coding sequence appears to be under balancing
selection (dN/dS=0.90), indicating that certain amino acid substitutions (e.g. those that eliminate
immunity but retain killing ability) are not tolerated. In addition, substitutions are extremely biased
toward transitions over transversions (Supplementary File 2, R=6.4, y>=44.2, df=1, P<0.0001), a bias that
is also present in other laboratory-derived M1 variants (R=4.1) (Suzuki et al. 2015) and natural variation
of the helper L-A virus (R=3.0) (Diamond et al. 1989, Icho and Wickner 1989). The
transition:transversion bias appears specific to viral genomes as the ratio is much lower within evolved
nuclear genomes (R=0.8), especially in genes inferred to be under selection (R=0.5), suggesting a
mutational bias of the viral RNA-dependent RNA polymerase (Lang et al. 2013, Fisher et al. 2018, Marad
et al. 2018).

Though point mutations are the most common form of evolved variation, we also detected two
viral genomes in which large portions of the K1 ORF are deleted (Figure 3B). Despite the loss of the
majority of the K1 coding sequence, the deletion mutants maintain cis signals for replication and
packaging (Ribas and Wickner 1992, Ribas et al. 1994). Notably, the two populations that possess these
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deletion mutants also possess full-length viral variants. The deletion mutants we observe are similar to the
ScV-S defective interfering particles that have been shown to outcompete full-length virus presumably
due to their decreased replication time (Kane et al. 1979, Ridley and Wickner 1983, Esteban and Wickner

1988).

Host/virus co-evolutionary dynamics are complex and operate over multiple scales

To compare the dynamics of viral genome evolution, nuclear genome evolution, and phenotypic
evolution we performed time-course sequencing of viral genomes from three yeast populations that lost
killing ability and for which we have whole-population, whole-genome, time-course sequencing data for
the nuclear genome (Lang et al. 2013). As with the evolutionary dynamics of the host genome, the
dynamics of viral genome evolution feature clonal interference (competition between mutant genotypes),
genetic hitchhiking (an increase in frequency of an allele due to genetic linkage to a beneficial mutation),
and sequential sweeps (Figure 4, Figure 4-figure supplement 1). Interestingly, viral sweeps often coincide
with nuclear sweeps. Since the coinciding nuclear sweeps often contain known driver mutations, it is
possible that the viral variants themselves are not driving adaptation but instead hitchhiking on the back
of beneficial nuclear mutations. This is consistent with the observation that the introduction of the viral
variant from the Intermediate clone did not affect the fitness of the Early clone (Figure 1B)

To determine if the loss of killer phenotype is caused solely by mutations in the killer virus, we
transferred the ancestral virus (K*I") and five evolved viral variants into the virus-cured Early clone via
cytoduction (Figure 5A). The five viral variants were selected to span the range of evolved killer
phenotypes: one exhibited weak killing ability and full immunity (K"I": D253N), three exhibited no
killing ability and full immunity (K'1": P47S, D106G, 1292M), and one exhibited neither killing ability
nor immunity (K'I: -1 frameshift). Following cytoduction, we observed that the killer phenotype of each
cytoductant matched the killer phenotype of the population of origin, which demonstrates that viral

mutations are sufficient to explain changes in killer phenotypes (Figure 5-figure supplement 1).
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To determine if any viral variants affect host fitness, we competed all five cytoductants against
the killer-containing Early clone (K*I") and the virus-cured Early clone (K'I"). Frequency-dependent
selection was observed in all cases in which one competitor exhibited killing ability and the other
competitor lacked immunity (Figure 5A). For example, cytoductants containing either the ancestral virus
or the weak-killing D253N variant exhibited a frequency dependent advantage over the virus-cured Early
clone. However, in all competitions where the killer-associated phenotypes were compatible, host fitness
was not impacted by the specific viral variant, or even by the presence of the virus itself. These data
suggest that production of active toxin and maintenance of the virus have no detectable fitness costs to the
host. These findings support previous theoretical and empirical studies (Pieczynska et al. 2016,

Pieczynska et al. 2017) that claim that mycoviruses and their hosts have co-evolved to minimize cost.

Success of evolved viral variants is due to an intracellular fitness advantage

Based on the lack of a measurable effect of viral mutations on host fitness when killing-mediated
interactions are absent, we hypothesized that the evolved viral variants may have a selective advantage
within the viral population of individual yeast cells. A within-cell advantage has been invoked to explain
the invasion of internal deletion variants (e.g. ScV-S (Kane et al. 1979)) but has not been extended to
point mutations. To test evolved viral variants for a within-cell fitness advantage, we generated a
heteroplasmic diploid strain by mating the ancestor (with wildtype virus) with a haploid cytoductant
containing either the 1292M (K'I") or -1 frameshift (K'I) viral variant. The heteroplasmic diploids were
propagated for seven single-cell bottlenecks every 48 hours to minimize among-cell selection. At each
bottleneck, we assayed the yeast cells for killer phenotypes and we quantified the ratio of the intracellular
viral variants by RT-PCR and sequencing. We find that killing ability was lost from all lines, suggesting
that the evolved viral variants outcompeted the ancestral variant (Figure 5B). Sequencing confirmed that
the derived viral variant fixed in most lines (Figure 5C). In some lines, however, the derived viral variant
increased initially before decreasing late. Further investigation into one of these lines revealed that the
decrease in frequency of the viral variant corresponded to the sweep of a de novo G131D variant (Figure
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5C, inset). Viral variants therefore appear to constantly arise, and the evolutionary success of the observed
variants results from their selective advantage over viral competitors within the context of an individual
cell. We speculate that an intracellular competition between newly arising viral variants also explains the
loss of immunity from populations that previously lost killing ability (Figure 2-figure supplement 1),

given the relaxed selection for the maintenance of functional immunity in those populations.

Discussion

We examined phenotypic and sequence co-evolution of an intracellular double-stranded RNA
virus and the host nuclear genome over the course of 1,000 generations of experimental evolution. We
observe complex dynamics including genetic hitchhiking and clonal interference in the host populations
as well as the intracellular viral populations. Phenotypic and genotypic changes including the loss of
killing ability, mutations in the host-encoded cell-wall biosynthesis genes, and the virally encoded toxin
genes occur repeatedly across replicate populations. The loss of killer-associated phenotypes—Killing
ability and immunity to the killer toxin—Ileads to three phenomena with implications for adaptive
evolution: positive frequency-dependent selection, multilevel selection, and nontransitivity.

Frequency-dependent selection can be either negative, where rare genotypes are favored, or
positive, where rare genotypes are disfavored. Of the two, negative frequency-dependent selection is more
commonly observed in experimental evolution, arising, for example, from nutrient cross-feeding (Helling
et al. 1987, Turner et al. 1996, Spencer et al. 2008, Kinnersley et al. 2014, Plucain et al. 2014, Green et al.
2020) and spatial structuring (Rainey and Travisano 1998, Frenkel et al. 2015). Positive frequency-
dependent selection, in contrast, is not typically observed in experimental evolution. By definition, a new
positive frequency-dependent mutation must invade an established population at a time when its fitness is
at its minimum. Even in situations in which positive frequency-dependent selection is likely to occur,
such as the evolution of cooperative group behaviors and interference competition (Chao and Levin

1981), a mutation may be unfavorable at the time it arises. A crowded, structured environment provides
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an opportunity for allelopathies to offer a local advantage. Here we describe an alternative mechanism for
the success of positive frequency-dependent mutations through multilevel selection of the host genome
and a toxin-encoding intracellular virus. The likelihood of such a scenario occurring is aided by the large
population size of the extrachromosomal element: each of the ~10° cells that comprise each yeast
population contains ~10? viral particles (Bostian et al. 1983, Ridley and Wickner 1983).

Nontransitivity in our experimental system is due, in part, to interference competition. The
production of a Killer toxin by the Early clone kills the toxin-susceptible Late clone in a frequency-
dependent manner: higher starting frequencies of the Early clone result in higher concentrations of toxin
in the environment. Interference competition can drive ecological nontransitivity (Kerr et al. 2002, Kirkup
and Riley 2004), suggesting that similar mechanisms may underlie both ecological and genealogical
nontransitivity. The adaptive evolution of genealogical nontransitivity in our system does not follow the
canonical model of a co-evolutionary arms race where the host evolves mechanisms to prevent the selfish
replication of the virus and the virus evolves to circumvent the host’s defenses (Daugherty and Malik
2012, Rowley 2017). Rather, mutations that fix in the viral and yeast populations do so because they
provide a direct fitness advantage in their respective populations. Nontransitivity arises through the
combined effect of beneficial mutations in the host genome (which improves the relative fitness within
the yeast population, regardless of the presence or absence of the Killer virus) and the adaptive loss of
killing ability and degeneration of the intracellular virus (which provides an intracellular fitness
advantage to the virus). The end result is a high-fitness yeast genotype (relative to the ancestral yeast
genotype) that contains degenerate viruses, rendering their hosts susceptible to the virally-encoded toxin.

Though we did not find an impact of nuclear mutations on killer-associated phenotypes, we do
observe a statistical enrichment of mutations in genes involved in B-glucan biosynthesis and in genes that
when deleted confer a high level of resistance to the killer toxin. Nearly all mutations in these toxin-
resistance genes are nonsynonymous (18 nonsense/frameshift, 21 missense, 1 synonymous), indicating a

strong signature of positive selection. This suggests that the nuclear genome adapting in response to the
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presence of the killer toxin, however, the effect of these mutations may be beyond the resolution of our
fitness assay.

Among the viral variants, we identified were two unique ~1 kb deletions; remnants of the killer
virus that retain little more than the cis-acting elements necessary for viral replication and packaging.
These defective interfering particles are thought to outcompete full-length virus due to their decreased
replication time (Kane et al. 1979, Ridley and Wickner 1983, Esteban and Wickner 1988). Defective
interfering particles are common to RNA viruses (Holland et al. 1982). Though there are several different
killer viruses in yeast (e.g. K1, K2, K28, Klus), each arose independently and has a distinct mechanism of
action (Rodriguez-Cousifio et al. 2017). Nontransitive interactions may therefore arise frequently through
cycles of gains and losses of toxin production and toxin immunity in lineages that contain RNA viruses.

Reports of nontransitivity arising along evolutionary lines of descent are rare (de Visser and
Lenski 2002, Beaumont et al. 2009). The first (and most widely cited) report of nontransitivity along a
direct line of descent occurred during yeast adaptation in glucose-limited chemostats (Paquin and Adams
1983). This experiment was correctly interpreted under the assumption—generally accepted at the time—
that large asexual populations evolved by clonal replacement, where new beneficial mutations arise and
quickly sweep to fixation. This strong selection/weak mutation model, however, is now known to be an
oversimplification for large asexual populations, where multiple beneficial mutations arise and spread
simultaneously through the population leading to extensive clonal interference (Gerrish and Lenski 1998,
Kvitek and Sherlock 2013, Lang et al. 2013). In addition, the duration of the Paquin and Adams
experiment was too short for the number of reported selective sweeps to have occurred (four in 245
generations and six in 305 generations, for haploids and diploids, respectively). The strongest known
beneficial mutations in glucose-limited chemostats, hexose transporter amplifications, provide a fitness
advantage of ~30% (Gresham et al. 2008, Kvitek and Sherlock 2011) and would require a minimum of
~150 generations to fix in a population size of 4 x 10° (Otto and Whitlock 1997). We contend that Paquin
and Adams observed nontransitive interactions among contemporaneous lineages—ecological
nontransitivity—rather than nontransitivity among genealogical descendants. Apart from the present
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study, there are no other examples of nontransitivity arising along a line descent, but numerous examples
of nontransitive interactions among contemporaneous lineages (Sinervo and Lively 1996, Kerr et al. 2002,
Kirkup and Riley 2004, Karolyi et al. 2005, Laird and Schamp 2006, Reichenbach et al. 2007, Precoda et
al. 2017, Menezes et al. 2019).

Here we present a mechanistic case study on the evolution of nontransitivity along a direct line of
genealogical descent. We determine the specific nuclear and viral changes that lead to nontransitivity in
our focal population (Figure 6). Our results show that the continuous action of selection can give rise to
genotypes that are less fit compared to a distant ancestor. We show that nontransitive interactions can
arise quickly due to multilevel selection in a host/virus system. In the context of this experiment multi-
level selection is common—most yeast populations fix nuclear and viral variants by Generation 1,000.
Overall, our results demonstrate that adaptive evolution is capable of giving rise to nontransitive fitness

interactions along an evolutionary lineage, even under simple laboratory conditions.
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Key Resources Table

Reagent type Designation Source or Identifiers Additional
(species) or reference information
resource
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Strain, strain

First reported

Early clone /

Lang Lab strain

background in Lang et al. | Ancestor of collection
(Saccharomyces 2011 evolution
cerevisiae) yGIL432 experiment
Stl’ain, Stl’ain FirSt Lang Lab Strain
background reported in ymCitrine collection
(Saccharomyces Lang et al. reference
cerevisiae) yGIL519 2011 strain
Stl’ain, Stl’ain Lang Lab Strain
background collection
(Saccharomyces Intermediate
cerevisiae) yGIL1582 This paper clone
Strain, strain
background Lang Lab strain
(Saccharomyces collection
cerevisiae) yGIL1042 This paper Late clone
Strain, strain Lang Lab strain
background collection
(Saccharomyces Sensitive
cerevisiae) yGIL1097 This paper tester strain
Strain, strain Lang Lab strain
background Early clone / | collection
(Saccharomyces Ancestor
cerevisiae) yGIL1253 This paper (M1 cured)
Strain, strain Lang Lab strain
background kar1A15 collection
(Saccharomyces mating
cerevisiae) yGIL1353 This paper partner

Mark Rose

(Georgeto kar1A15
Recombinant wn integrating
DNA reagent pPMR1593 University) plasmid ATCC (87710)
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PCR

Sequence- (Sanger TTGGCTATTAC
based reagent M1_F1 This paper sequencing) AGCGTGCCA
PCR
Sequence- (Sanger ATGACGAAGC
based reagent M1 F5 This paper sequencing) CAACCCAAGT
PCR CAGAAAAAGA
Sequence- (Sanger GAGAACAGGA
based reagent M1_F7 This paper sequencing) C
cDNA
synthesis,
PCR
Sequence- (Sanger TGCTGTTGCAT
based reagent M1 R3 This paper sequencing) TAAACCAGGC
PCR
Sequence- (Sanger ATAGCCCGGT
based reagent M1 R6 This paper sequencing) GCTCTGTAGG
PCR
Sequence- (Sanger ATCAGGTGAT
based reagent LA_F2 This paper sequencing) GCAGCGTTGA
PCR ACTCCCCATG
Sequence- (Sanger CTAAGATTTGT
based reagent LA_F3 This paper sequencing) T
PCR
Sequence- (Sanger CGGCACCCTT
based reagent LA R2 This paper sequencing) ACGGAGATAC
PCR
Sequence- (Sanger GACCTGTAATG
based reagent LA R3 This paper sequencing) CCCGGAGTG
PCR
Sequence- (Sanger AGTACTGAGC
based reagent LA_R6 This paper sequencing) CCCAAGACCA
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CGTCGGCAGC
GTCAGATGTGT
ATAAGAGACA
PCR GNNNNNNNNC
Sequence- (Mlumina CATGGTGTCG
based reagent 1292M_readl This paper sequencing) GCTAATGGT
CGTGGGCTCG
GAGATGTGTAT
PCR AAGAGACAGA
Sequence- (lMumina GGTCAGACAC
based reagent 1292M_read?2 This paper sequencing) GATGCCCTA
CGTCGGCAGC
GTCAGATGTGT
ATAAGAGACA
PCR GNNNNNNNNC
Sequence- frameshift_re (lMumina CCGTCTGCGA
based reagent adl This paper sequencing) CAGTAGAAA
CGTGGGCTCG
GAGATGTGTAT
PCR AAGAGACAGT
Sequence- frameshift_re (Numina GTGTAAGAACT
based reagent ad2 This paper sequencing) GCGTGGGT
AATGATACGG
CGACCACCGA
GATCTACACNN
PCR NNNNNNTCGT
Sequence- (Mlumina CGGCAGCGTC
based reagent i5_adapter This paper sequencing) AGATG
CAAGCAGAAG
ACGGCATACG
AGATNNNNNN
PCR NNGTCTCGTG
Sequence- (NMumina GGCTCGGAGA
based reagent i7_adapter This paper sequencing) TGTG
352
353  Experimental Evolution
354 Details of the evolution experiment have been described previously (Lang et al. 2011). Briefly,
355  population BYS1-D08 is one of ~600 populations that were evolved for 1,000 generations at 30°C in

356  YPD + A&T (yeast extract, peptone, dextrose plus 100 ug/ml ampicillin and 25 ug/ml tetracycline to
357  prevent bacterial contamination). Each day populations were diluted 1:2'% into 128 pl of YPD + A&T in
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359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

round-bottom 96-well plates using a BiomekFX liquid handler. The dilution scheme equates to 10
generations of growth per day at an effective population size of ~10°.

Growth Conditions and Strain Construction

Unless specified otherwise, yeast strains were propagated at 30°C in YPD + A&T. The ancestor
and evolved populations were described previously (Lang et al. 2011). Early, Intermediate, and Late
clones were isolated by resurrecting population BYS1-D08 at the Generation 0, 335, and 1,000,
respectively. These specific timeponts were selected to coincide with the completion of a selective sweep
(Lang et al. 2013), when the population is expected to be near clonal. For each timepoint we isolated
multiple clones from a YPD plate and assayed each one to verify that the killer phenotype was uniform.

The ancestral strain was cured of the M1 and LA viruses by streaking to single colonies on YPD
agar and confirmed by halo assay, PCR, and sequencing. We integrated a constitutively-expressed
fluorescent reporter (PACT1-ymCitrine) at the CAN1 locus in the cured ancestral strain as well as the
Intermediate (Generation 335) and Late (Generation 1,000) clones.

Karyogamy mutants were constructed by introducing the kari415 allele by two-step gene
replacement in the cured a MATa version of the ancestor (Georgieva and Rothstein 2002). The kariA15-
containing plasmid pMR1593 (Mark Rose, Georgetown University) was linearized with Bglll prior to
transformation and selection on -Ura. Mitotic excision of the integrated plasmid was selected for plating
on 5-fluorotic acid (5-FOA). Then we perform replaced NatMX with KanMX to enable selection for
recipients during viral transfer.

Fitness Assays

Competitive fitness assays were performed as described previously (Lang et al. 2011, Lang et al.
2013). To investigate frequency dependence, competitors were mixed at various ratios at the initiation of
the experiment. Competitions were performed for 50 generations under conditions identical to the
evolution experiment (Lang et al. 2011). Every 10 generations, competitions were diluted 1:1,000 in fresh
media and an aliquot was sampled by BD FACS Canto Il flow cytometer. Flow cytometry data was
analyzed using FlowJo 10.3. Relative fitness was calculated as the slope of the change in the natural log
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393
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395

396

397

398

399

400

401

402

403

404

405

406

407

408

ratio between the experimental and reference strain. To detect frequency-dependent selection, each 10-
generation interval was analyzed independently to calculate starting frequency and fitness.
Halo Assay

Killer phenotype was measured using a high-throughput version of the standard halo assay
(Crabtree et al. 2019) and a liquid handler (Biomek FX). Assays were performed using YPD agar that had
been buffered to pH 4.5 (citrate-phosphate buffer), dyed with methylene blue (0.003%), and poured into a
1-well rectangular cell culture plate.

Killing ability was assayed against a sensitive tester strain (yGIL1097) that was isolated from a
separate evolution experiment initiated from the same ancestor. The sensitive tester was grown to
saturation, diluted 1:10, and spread (150 pL) evenly on the buffered agar. Query strains were grown to
saturation, concentrated 5x, and spotted (2 L) on top of the absorbed lawn (Figure 1-figure supplement
2, left).

Immunity was assayed against the ancestral strain (yGIL432). Query strains were grown to
saturation, diluted 1:32, and spotted (10 pL) on the buffered agar. The Killer tester was grown to
saturation, concentrated 5x, and spotted (2 L) on top of the absorbed query strain (Figure 1-figure
supplement 2, right).

Plates were incubated at room temperature for 2-3 days before assessment. Killer phenotype was scored
according to the scale in shown in Figure 2.

Viral RNA Isolation, cDNA Synthesis, PCR

Nucleic acids were isolated by phenol-chloroform extraction and precipitated in ethanol. Isolated
RNA was reverse-transcribed into cDNA using ProtoScript Il First Strand cDNA Synthesis Kit (NEB)
with either the enclosed Random Primer Mix or the M1-specific oligo M1_R3 (Table S3).

Sanger Sequencing and Bioinformatics Analyses

PCR was performed on cDNA using Q5 High-Fidelity Polymerase (NEB). The K1 ORF was

amplified using primers M1_F1 or M1_F5 and M1_R6 (Table S3). The M1 region downstream of the
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429

430

431

432

433

434

polyA stretch was amplified using M1_F7 and M1_R3. The LA virus was amplified using LA_F2 and
LA R2,LA F2and LA _R3, or LA F3and LA _R6. PCR products were Sanger sequenced by Genscript.

Mutations were identified and peak height quantified using 4Peaks (nucleobytes). For
intracellular competitions, mutation frequency was quantified by both Sanger and Illumina sequencing
(see below), with both methods producing nearly identical results (Figure 5-figure supplement 2).
The Sanger sequencing data was aligned to publicly-available M1 and LA references (GenBank
Accession Numbers U78817 and J04692, respectively) using ApE (A plasmid Editor). The ancestral M1
and LA viruses differed from the references at 7 sites (including 3 K1 missense mutations) and 19 sites,
respectively (Figure 3-figure supplement 1).
Viral Transfer

Viruses were transferred to MATa strains using the MATa karyogamy mutant as an intermediate.
Viral donors (MATa, ura3, NatMX) were first transformed with the pRS426 (URA3, 2u ORI) for future
indication of viral transfer. Cytoduction was performed by mixing a viral donor with the karyogamy
mutant recipient (MATa, ura3, KanMX) at a 5:1 ratio on solid media. After a 6 hr incubation at 30°C, the
cells were plated on media containing G418 to select for cells with the recipient nuclei. Recipients that
grew on -Ura (indicator of cytoplasmic mixing) and failed to grow on ClonNat (absence of donor nuclei)
then served as donors for the next cytoduction. These karyogamy mutant donors (MATa, URA3, KanMX)
were mixed with the selected recipient (MATa, ura3, NatMX) at a 5:1 ratio on solid media. After a 6 hr
incubation at 30°C, the cells were plated on media containing ClonNat to select for cells with recipient
nuclei. Recipients that grew on -Ura (indicator of cytoplasmic mixing) and failed to grow on ClonNat
(absence of the donor nucleus) were then cured of the indicator plasmid by selection on 5-FOA. Killer
phenotype was confirmed by halo assays and the presence of the viral variants in the recipient was
verified by Sanger sequencing.

Illumina Sequencing and Bioinformatics Analyses

Multiplexed libraries were prepared using a two-step PCR. First, cDNA was amplified by Q5
High-Fidelity Polymerase (NEB) for 10 cycles using primers 1292M_readl and 1292M_read?2 or
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448

449

450

451

452

453

454

455

456
457

458
459

460
461

frameshift_readl and frameshift_read2 (Table S3) to incorporate a random 8 bp barcode and sequencing
primer binding sites. The resulting amplicons were further amplified by Q5 PCR for 15 cycles using
primers i5_adapter and i7_adapter to incorporate the sequencing adaptors and indices. Libraries were
sequenced on a NovaSeq 6000 (Illumina) at the Genomics Core Facility at Princeton University.

Raw FASTQ files were demultiplexed using a dual-index barcode splitter

(https://bitbucket.org/princeton_genomics/barcode_splitter) and trimmed using Trimmomatic (Bolger et

al. 2014) with default settings for paired-end reads. Mutation frequencies were determined by counting
the number of reads that contain the ancestral or evolved allele (mutation flanked by five nucleotides).

Intracellular Competitions

Within-cell viral competitions were performed by propagating a heteroplasmic diploid and
monitoring killer phenotype and viral variant frequency. Diploids were generated by crossing the ancestor
with a cytoductant harboring either the 1292M or -1 frameshift viral variant. For each viral variant, three
diploid lines (each initiated by a unique mating event) were passaged every other day on buffered YPD
media for a total of 7 single-cell bottlenecks to minimize among-cell selection. A portion of each
transferred colony was cryopreserved in 15% glycerol. Cryosamples were revived, assayed for killer
phenotype, and harvested for RNA. Following RT-PCR, samples were sent for Sanger sequencing and
Illumina sequencing. Variant frequency deviated from the expected frequency of 0.5 at the initial
timepoint, presumably due to an unavoidable delay between the formation of the heteroplasmic diploid
and initiation of the intracellular competition from a single colony. Alternatively, viral copy number may

vary between donor and recipient cells.
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Figure Legends

Figure 1. Nontransitivity and positive frequency dependence arise along an evolutionary lineage. A)
Sequence evolution (from Lang et al. 2013) shows that population BYS1-D08 underwent four clonal
replacements over 1,000 generations. Mutations in the population that went extinct are not shown. The
four selective sweeps are color-coded: red, mutations in yurl, rxt2, and an intergenic mutation; green, a
single intergenic mutation; orange, mutations in mpt5, gcn2, iml2, ste4, mudl, and an intergenic mutation;
blue, three intergenic mutations. The Intermediate clone, isolated at Gen. 335 does not produce, but is
resistant to, the killer toxin (K'I"). The Late clone, isolated at Generation 1,000 does not produce, and is
sensitive to, the Killer toxin (K'I"). B) Competition experiments demonstrate nontransitivity and positive
frequency-dependent selection. Left: Relative fitness of Early (Gen. 0), Intermediate (Gen. 335), and Late
(Gen. 1,000) clones. Right: Relative fitness of the Early clone without ancestral virus or with the viral
variant from the Intermediate clone. Fitness and starting frequency correspond to the later clone relative
to the earlier clone during pairwise competitions.
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Figure 2. Changes in killer-associated phenotypes in the 142 populations that were founded by a single
ancestor and propagated at the same bottleneck size as BYS1-D08 (Lang et al. 2011). A) Loss of killing
ability (top) and immunity (bottom) from evolving yeast populations over time. Killer phenotypes were
monitored by halo assay (examples shown on right). B) Breakdown of killer phenotypes for all
populations at Generation 1,000. Data point size corresponds to number of populations. Border and fill
color indicate killing ability and immunity phenotypes, respectively, as in panel A.

Figure 3. Loss of killer phenotype correlates with presence of mutations in the K1 toxin gene. A) Number
of mutations in the K1 gene in yeast populations that retain or lose killing ability. Each data point
represents a single yeast population. B) Observed spectrum of point mutations across the K1 toxin in 67
evolved yeast populations. Mutations were detected in a single population unless otherwise noted. Large
internal deletion variants from two yeast populations (BYS1-D06 and BYS2-E11). The deletions span the
region indicated by the dashed gray line. VBS: viral binding site. TRE: terminal recognition element.

Figure 4. Viral dynamics mimic nuclear dynamics. Killer phenotype of evolved populations is indicated
by color according to the key. Nuclear dynamics (reported previously Lang et al. 2014) are represented as
solid lines. Nuclear mutations that sweep before or during the loss of killing ability are indicated by black
lines. All other mutations are indicated by gray lines. Viral mutations are indicated by purple dashed lines
and labeled by amino acid change.

Figure 5. Viral evolution is driven by selection for an intracellular competitive advantage. A) Relative
fitness of viral variants in pairwise competition with the ancestor (K*1") and virus-cured ancestor (K'I).
Killer phenotype and identity of viral variant labeled above (K" indicates weak killing ability). Killer
phenotype of the ancestral competitor labeled below. Starting frequency indicated by color. B) Change to
killer phenotype during intracellular competitions between viral variants (by color) and ancestral virus.
Replicate lines indicated by symbol. C) Variant frequency during intracellular competitions. Colors and
symbols consistent with panel B. Inset: frequency of the de novo G131D viral variant.

Figure 6. The sequence of events leading to the evolution of nontransitivity in population BYS1-DO08.
Nontransitivity arises through multilevel selection requiring adaptive mutations in both the nuclear and
viral genomes. The Early clone (orange) produces, and is resistant to, killer toxin. Step 1: After 335
generations, the Intermediate clone (green) fixed three nuclear mutations including a beneficial mutation
in yurl and lost the ability to produce killer toxin due to intracellular competition between viral variants.
Step 2: After another 665 generations, the Late clone (purple) fixed an additional ten nuclear mutations
including a beneficial mutation in ste4 and lost immunity to the killer toxin, which is no longer present in
the environment. Step 3: When brought into competition with the Early clone (1,000 generations
removed), the Late clone loses in a frequency-dependent manner due to Killer toxin produced by the Early
clone. Positive frequency-dependent selection (PFDS) emerges in the competition because the fitness
disadvantage of the Late clone can be overcome if it starts the competition at high frequency relative to
the Early clone.

Figure 1-figure supplement 1. Positive frequency dependent interaction along an evolutionary lineage.
Fitness of Late clone relative to Early clone, as a function of frequency. Stable fixed points indicated by
closed black circles and unstable fixed point indicated by open black circle.

Figure 1-figure supplement 2. Visualization of killer phenotype by halo assay. A) Schematic of killer
phenotypic assays. To assay killing ability, a tester (sensitive) strain is spread as a lawn, followed by a
query strain spotted as a concentrated culture. After incubation, the production of a zone of clearing
indicates that the query strain possesses killing ability. To assay sensitivity, a query strain is plated as a
dilute spot, followed by a tester (killer) strain spotted as a concentrated culture. After incubation, the
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production of a zone of clearing indicates that the query strain possesses killing ability. B) Halo assays
demonstrate that the ancestor of the evolution experiment exhibits killing ability and immunity while the
cured ancestor lacks killing ability and is sensitive to the toxin.

Figure 1-figure supplement 3. Stepwise deterioration of killer phenotype in evolved clones. The Killer
phenotypes of Early, Intermediate, and Late clones from population BYS1-D08 were determined by halo
assay.

Figure 2-figure supplement 1. Killer phenotypes of the 17 populations that develop sensitivity to the K1
toxin. Killer phenotype is shown according to scale in Figure 2. For each population, killing ability is
shown in shades of red (top) and immunity in shades of blue (bottom).

Figure 3-figure supplement 1. Sequence divergence of ancestral viruses. The viruses of our ancestral yeast
strain diverged from previously published LA and M1 genomes by 19 nucleotides and 7 nucleotides,
respectively. Solid lines represent nonsynonymous polymorphisms, labeled by amino acid substitution.
Dashed lines represent synonymous/intergenic polymorphisms.

Figure 4-figure supplement 1. Evolutionary dynamics of nuclear genotypes and killer phenotypes over
time. The K1 mutations detected in each population at Generation 1,000 are indicated in the top-left of the
plot. Trajectories of nuclear mutations were obtained from Lang et al. 2013. Black lines indicate nuclear
mutations that swept up to and including the period of killer phenotypic change (all others nuclear
mutations are gray). Mutational cohorts are labeled according to their putative driver or putative toxin
resistance mutation. Killing ability and immunity are indicated in bar graph (bottom) by shades of red and
blue, respectively.

Figure 5-figure supplement 1. Cytoductants exhibit the same killer phenotype as the population of origin.
Viral variants were transferred from evolved populations to a cured ancestor. Halo assays demonstrate
that Killer phenotypes were consistent between donor and recipient strains. Viruses were obtained from
the following evolved populations at Generation 1,000: BYS1-A03 (D253N), RMB1-A02 (P47S), BYB1-
H06 (D106G), BYS1-A05 (1292M), BYS2-B09 (frameshift). Populations RMB1-A02 and BYS2-B09
appear mixed given the observed speckling pattern.

Figure 5-figure supplement 2. Consensus between Sanger and Illumina sequencing in reporting mutation
frequency. Intracellular competitions were tracked over time by both Sanger and Illumina sequencing.

Supplementary File 1. Killer phenotype and K1 mutations in evolved yeast populations at Generation
1,000. A caret (") indicates that a population is heteroplasmic for variants listed. An asterisk (*) indicates
that the mutation results in loss of PCR primer binding sites thereby preventing further characterization.

Supplementary File 2. Mutational biases in viral and nuclear datasets.
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