

1 Adaptive evolution of nontransitive fitness in yeast

2
3 **Sean W. Buskirk^{1,2}, Alecia B. Rokes¹, Gregory I. Lang^{1*}**

4 ¹Department of Biological Sciences, Lehigh University, Bethlehem PA 18015.

5 ²Present Address: Department of Biology, West Chester University, West Chester PA 19383.

6 *Correspondence: glang@lehigh.edu

7 8 **Abstract**

9 **A common misconception is that evolution is a linear “march of progress,” where each**
10 **organism along a line of descent is more fit than all those that came before it. Rejecting this**
11 **misconception implies that evolution is nontransitive: a series of adaptive events will, on occasion,**
12 **produce organisms that are less fit compared to a distant ancestor. Here we identify a nontransitive**
13 **evolutionary sequence in a 1,000-generation yeast evolution experiment. We show that**
14 **nontransitivity arises due to adaptation in the yeast nuclear genome combined with the stepwise**
15 **deterioration of an intracellular virus, which provides an advantage over viral competitors within**
16 **host cells. Extending our analysis, we find that nearly half of our ~140 populations experience**
17 **multilevel selection, fixing adaptive mutations in both the nuclear and viral genomes. Our results**
18 **provide a mechanistic case-study for the adaptive evolution of nontransitivity due to multilevel**
19 **selection in a 1,000-generation host/virus evolution experiment.**

20 21 **Introduction**

22 Adaptive evolution is a process in which selective events result in the replacement of less-fit
23 genotypes with a more fit ones. Intuitively, a series of selective events, each improving fitness relative to
24 the immediate predecessor, should translate into a cumulative increase in fitness relative to the ancestral
25 state. However, whether or not this is borne out over long evolutionary time scales has long been the

26 subject of debate (Ruse 1993, Dawkins 1997, Gould 1997, Shanahan 2000). The failure to identify broad
27 patterns of progress over evolutionary time scales—despite clear evidence of selection acting over
28 successive short time intervals—is what Gould referred to as “the paradox of the first tier (Gould 1985).”
29 This paradox implies that evolution exhibits nontransitivity, a property that is best illustrated by the
30 Penrose staircase and the Rock-Paper-Scissors game. The Penrose staircase is a visual illusion of
31 ascending sets of stairs that form a continuous loop such that—although each step appears higher than the
32 last—no upward movement is realized. In the Rock-Paper-Scissors game each two-way interaction has a
33 clear winner (paper beats rock, scissors beats paper, and rock beats scissors), yet due to the nontransitivity
34 of these two-way interactions, no clear hierarchy exists among the three.

35 In ecology, nontransitive interactions among extant species are well-documented as contributors
36 to biological diversity and community structure (Kerr et al. 2002, Károlyi et al. 2005, Laird and Schamp
37 2006, Reichenbach et al. 2007, Menezes et al. 2019) and arise by way of resource (Sinervo and Lively
38 1996, Precoda et al. 2017) or interference competition (Kirkup and Riley 2004). First put forward in the
39 1970s (Gilpin 1975, Jackson and Buss 1975, May and Leonard 1975, Petraitis 1979), the importance of
40 nontransitivity in ecology has garnered extensive theoretical and experimental consideration over the last
41 half century (e.g. (Sinervo and Lively 1996, Kerr et al. 2002, Allesina and Levine 2011, Rojas-Echenique
42 and Allesina 2011, Soliveres et al. 2015, Liao et al. 2019)).

43 What is unknown is whether nontransitive interactions arise for direct descendants along a line of
44 genealogical succession. This is the crux of Gould’s paradox and has broad implications for our
45 understanding of evolutionary processes. For instance, if an evolved genotype is found to be less fit in
46 comparison to a distant ancestor, the adaptive landscape upon which the population is evolving may not
47 contain true fitness maxima (Barrick and Lenski 2013, Van den Bergh et al. 2018) and, more broadly,
48 directionality and progress may be illusory (Gould 1996). Testing the hypothesis that nontransitive
49 interactions arise along lines of genealogical descent, however, is not possible in natural populations
50 because it requires our ability to directly compete an organism against its immediate predecessor as well
51 as against its extinct genealogical ancestors. Fortunately, laboratory experimental evolution, in which

52 populations are preserved as a “frozen fossil record,” affords us with the unique opportunity to test for
53 nontransitivity along a genealogical lineage by directly competing a given genotype against the extant as
54 well as the extinct.

55 An early study of laboratory evolution of yeast in glucose-limited chemostats appeared to
56 demonstrate that nontransitive interactions arise along a line of genealogical descent (Paquin and Adams
57 1983). However, the specific events that led to nontransitivity in this case are unknown, and it is likely the
58 case that the authors were measuring interactions between contemporaneous lineages in a population,
59 rather than individuals along a direct line of genealogical descent, as they report (see Discussion). Indeed,
60 adaptive diversification is common in experimental evolution due to spatial structuring (Rainey and
61 Travisano 1998, Frenkel et al. 2015) and metabolic diversification (Paquin and Adams 1983, Helling et
62 al. 1987, Turner et al. 1996, Spencer et al. 2008, Kinnersley et al. 2014), and is typically maintained by
63 negative frequency-dependent selection, in which rare genotypes are favored. Collectively this work
64 reinforces theory and observational evidence on the power of ecological nontransitivity as a driver and
65 maintainer of diversity but is silent as to whether genealogical succession can also be nontransitive.

66 Here we determine the sequence of events leading to the evolution of nontransitivity in a single
67 yeast population during a 1,000-generation evolution experiment. We show that nontransitivity arises
68 through multilevel selection involving both the yeast nuclear genome and the population of a vertically-
69 transmitted virus. Many fungi, including the yeast *Saccharomyces cerevisiae* are host to non-infectious,
70 double-stranded RNA “killer” viruses (Wickner 1976, Schmitt and Breinig 2002, Schmitt and Breinig
71 2006, Rowley 2017). Killer viruses produce a toxin that kills non-killer containing yeasts. The K1 toxin
72 gene contains four subunits (δ , α , γ , β), which are post-translationally processed and glycosylated to
73 produce an active two-subunit (α , β) secreted toxin (Bostian et al. 1983). Immunity to the toxin is
74 conferred by the pre-processed version of the toxin, thus requiring cells to maintain the virus for
75 protection. We show that nontransitivity arises due to multilevel selection: adaptation in the yeast nuclear
76 genome and the simultaneous stepwise deterioration of the killer virus. By expanding our study of host-

77 virus genome evolution to over 100 additional yeast populations, we find that multilevel selection, and
78 thus the potential for the evolution of nontransitive interactions, is a common occurrence given the
79 conditions of our evolution experiment.

80

81 **Results**

82 **Evolution of nontransitivity along a line of genealogical descent**

83 Previously we evolved ~600 haploid populations of yeast asexually for 1,000 generations in rich
84 glucose medium (Lang et al. 2011). We characterized extensively the nuclear basis of adaptation for a
85 subset of these populations through whole-genome whole-population time-course sequencing (Lang et al.
86 2013) and/or fitness quantification of individual mutations (Buskirk et al. 2017).

87 For one population (BYS1-D08) we were surprised to observe that a 1,000-generation clone lost
88 in direct competition with a fluorescently-labeled version of the ancestor. To test the hypothesis that a
89 nontransitive interaction arose during the adaptive evolution of this population, we isolated individual
90 clones from three timepoints: Generation 0 (Early), Generation 335 (Intermediate), and Generation 1,000
91 (Late) (Figure 1A). These timepoints were chosen, in part, to coincide with the completion of selective
92 sweeps in the population (Lang et al. 2013). The Intermediate clone was isolated following a selective
93 sweep that fixes three nuclear mutations including a beneficial mutation in *YUR1*. The Late clone was
94 isolated following three more selective sweeps that fix an additional ten nuclear mutations including a
95 beneficial mutation in *STE4*.

96 We performed pairwise competition experiments between the Early, Intermediate, and Late
97 clones at multiple starting frequencies. We find that the Intermediate clone is 3.8% more fit relative to the
98 Early clone and that the Late clone is 1.2% more fit relative to the Intermediate clone (Figure 1B, left
99 panel). The *yur1* mutation in the Intermediate clone and the *ste4* mutation in the late clone were
100 previously estimated to provide a $4.6\% \pm 0.5\%$ and $2.6\% \pm 0.4\%$ fitness advantage, respectively (Buskirk
101 et al. 2017), consistent with the fitness differences between the Intermediate and Early clones and the Late

102 and Intermediate clones. The expectation, assuming additivity, is that the Late clone will be more fit than
103 the Early clone, by roughly 5.0%. Surprisingly, we find that the Late clone is less fit than expected, to the
104 extent that it often loses in pairwise competition with the Early clone (Figure 1B, left panel). Furthermore,
105 the interaction between the Early and Late clones exhibits positive frequency-dependent selection, thus
106 creating a bi-stable system where the fitness disadvantage of the Late clone can be overcome if it starts
107 above a certain frequency relative to the Early clone (Figure 1-figure supplement 1).

108 **Evolution of nontransitivity is associated with changes to the killer virus**

109 Positive frequency-dependent selection is rare in experimental evolution and can only arise
110 through a few known mechanisms. It has been observed previously in yeast that harbor killer viruses
111 (Greig and Travisano 2008), which are dsRNA viruses that encode toxin/immunity systems. Using a well-
112 described halo assay (Woods and Bevan 1968), we find that the ancestral strain of our evolved
113 populations exhibits the phenotype expected of yeast that harbor the killer virus: it inhibits growth of a
114 nearby sensitive strain and resists killing by a known killer strain (Figure 1-figure supplement 2).

115 We asked if the observed nontransitivity in the BYS1-D08 lineage could be explained by
116 evolution of the killer phenotype. Phenotyping of the isolated clones revealed that the Intermediate clone
117 no longer exhibits killing ability (KI^+) and that the Late clone possesses neither killing ability nor
118 immunity (KI , Figure 1A, Figure 1-figure supplement 3). Killer toxin has been shown to impart
119 frequency-dependent selection in structured environments due to a high local concentration of secreted
120 toxin (Greig and Travisano 2008) We hypothesized that a stepwise loss of killing ability followed by loss
121 of immunity, along with the acquisition of beneficial *yur1* and *ste4* nuclear mutations, were responsible
122 for the frequency-dependent and nontransitive interaction between Early and Late clones.

123 To determine if killer toxin production by the Early clone is necessary for it to outcompete the
124 toxin-susceptible Late clone, we repeated the competition between the Early and Late clones using a
125 virus-cured version of the Early clone. We find that removing the virus from the Early clone abolishes the
126 frequency-dependent fitness advantage of the Early clone; the Late clone is 4.3% more fit than the cured
127 Early clone at all frequencies (Figure 1B, right panel) due to the presence of adaptive mutations in the

128 nuclear genome of the Late clone. Therefore the presence of killer virus in the Early clone, and the
129 subsequent loss of killer virus-associated phenotypes in the Late clone, were necessary for the evolution
130 of frequency-dependence and nontransitivity.

131 To determine if viral evolution alone is sufficient to account for the observed fitness gains in
132 nontransitive interactions, we focused on the first step in the evolutionary sequence: the transition from
133 the Early clone to Intermediate clone. We transferred the killer virus from the Intermediate clone to the
134 cured Early clone and assayed fitness relative to the Early clone. Because the virus from the Intermediate
135 clone no longer produces toxin, we suspected that it may provide a fitness benefit to the host. However,
136 we find that the evolved killer virus from the Intermediate clone confers no significant effect on host
137 fitness compared to the killer virus from the Early clone (Figure 1B, right panel). This shows that the
138 fitness benefit of the Intermediate clone relative to the Early clone is due to adaptation in the nuclear
139 genome. Taken together these experiments show that the sequence of events leading to the evolution of
140 nontransitivity involves changes to both the host and viral genomes.

141

142 **Changes to killer-associated phenotypes are common under our experimental conditions**

143 To determine the extent of killer phenotype evolution across all populations, we assayed the killer
144 phenotype of 142 populations that were founded by a single ancestor and propagated at the same
145 bottleneck size as BYS1-D08 (Lang et al. 2011). We find that approximately half of all populations
146 exhibit a loss or weakening of killing ability by Generation 1,000, with ~10% of populations exhibit
147 neither killing ability nor immunity (Figure 2). Of note, we did not observe loss of immunity without loss
148 of killing ability, an increase in killing ability or immunity, or reappearance of killing ability or immunity
149 once it was lost from a population (Figure 2-figure supplement 1), apart from the noise associated with
150 scoring of population-level phenotypes. Several populations (i.e. BYS2-B09 and BYS2-B12) lost both
151 killing ability and immunity simultaneously, suggesting that a single event can cause the loss of both the
152 killer phenotypes.

153 Mutations in nuclear genes can affect killer-associated phenotypes. The primary receptors of the
154 K1 killer toxin are β -glucans in the yeast cell wall (Pieczynska et al. 2013). We observe a statistical
155 enrichment of mutations in genes involved in β -glucan biosynthesis (6-fold Gene Ontology (GO)
156 Biological Process enrichment, $P<0.0001$). Furthermore, of the 714 protein-coding mutations dispersed
157 across 548 genes, 40 occur within 11 of the 36 genes (identified by (Pagé et al. 2003)) that, when deleted,
158 confer a high level of resistance to the K1 toxin ($\chi^2=18.4$, $df=1$, $P=1.8\times 10^{-5}$). Nevertheless, the presence of
159 mutations in nuclear genes that have been associated with high levels of resistance is not sufficient to
160 account for the loss of killing ability ($\chi^2=1.037$, $df=1$, $P=0.309$) or immunity ($\chi^2=0.103$, $df=1$, $P=0.748$).

161

162 **Standing genetic variation and *de novo* mutations drive phenotypic change**

163 We sequenced viral genomes from our ancestral strain and a subset of yeast populations ($n=67$) at
164 Generation 1,000 (Figure 3). We find that our ancestral strain, which was derived from the common lab
165 strain W303-1a, contains the M1-type killer virus (encoding the K1-type killer toxin) with only minor
166 differences from previously sequenced strains (Figure 3-figure supplement 1). Our ancestral strain also
167 possesses the L-A helper virus, which supplies the RNA-dependent RNA polymerase and capsid protein
168 necessary for the killer virus, a satellite virus, to complete its life cycle (Ribas and Wickner 1992). We
169 sequenced viral genomes from 57 populations that change killer phenotype and 10 control populations
170 that retained the ancestral killer phenotypes. Viral genomes isolated from populations that lost killing
171 ability possess 1-3 mutations in the M1 coding sequence – most being missense variants (Figure 3A). In
172 contrast, only a single mutation, synonymous nonetheless, was detected in M1 across the 10 control
173 populations that retained the killer phenotype ($\chi^2=59.3$, $df=1$, $P=1.4\times 10^{-13}$). The correlation between the
174 presence of mutations in the viral genome and the loss of killing ability is strong evidence that viral
175 mutations are responsible for the changes in killer phenotypes. We estimate that by Generation 1,000 half
176 of all populations have fixed viral variants that alter killer phenotypes (for comparison, *IRA1*, the most
177 common nuclear target, fixed in ~25% of populations over the same time period).

178 Of the 57 populations that lost killing ability, 42 fixed one of three single nucleotide
179 polymorphisms, resulting in amino acid substitutions D106G, D253N, and I292M and observed 13, 14,
180 and 15 times, respectively (Supplementary File 1). Given their prevalence, these polymorphisms likely
181 existed at low frequency in the shared ancestral culture (indeed, we can detect one of the common
182 polymorphisms, D106G, in individual clones at the Early time point, indicating that this mutation was
183 heteroplasmic in cells of the founding population). Killer phenotypes are consistent across populations
184 that fixed a particular ancestral polymorphism (Supplementary File 1).

185 In addition to the three ancestral polymorphisms, we detect 34 putative *de novo* point mutations
186 that arose during the evolution of individual populations (Supplementary File 1). Mutations are localized
187 to the K1 coding sequence, scattered across the four encoded subunits, and skewed towards missense
188 mutations relative to nonsense or frameshift (Figure 3B). Fourteen of the seventy-eight identified
189 mutations are predicted to fall at or near sites of protease cleavage or post-translational modification
190 necessary for toxin maturation. Overall, however, the K1 coding sequence appears to be under balancing
191 selection ($dN/dS=0.90$), indicating that certain amino acid substitutions (e.g. those that eliminate
192 immunity but retain killing ability) are not tolerated. In addition, substitutions are extremely biased
193 toward transitions over transversions (Supplementary File 2, $R=6.4$, $\chi^2=44.2$, $df=1$, $P<0.0001$), a bias that
194 is also present in other laboratory-derived M1 variants ($R=4.1$) (Suzuki et al. 2015) and natural variation
195 of the helper L-A virus ($R=3.0$) (Diamond et al. 1989, Ichijo and Wickner 1989). The
196 transition:transversion bias appears specific to viral genomes as the ratio is much lower within evolved
197 nuclear genomes ($R=0.8$), especially in genes inferred to be under selection ($R=0.5$), suggesting a
198 mutational bias of the viral RNA-dependent RNA polymerase (Lang et al. 2013, Fisher et al. 2018, Marad
199 et al. 2018).

200 Though point mutations are the most common form of evolved variation, we also detected two
201 viral genomes in which large portions of the K1 ORF are deleted (Figure 3B). Despite the loss of the
202 majority of the K1 coding sequence, the deletion mutants maintain cis signals for replication and
203 packaging (Ribas and Wickner 1992, Ribas et al. 1994). Notably, the two populations that possess these

204 deletion mutants also possess full-length viral variants. The deletion mutants we observe are similar to the
205 ScV-S defective interfering particles that have been shown to outcompete full-length virus presumably
206 due to their decreased replication time (Kane et al. 1979, Ridley and Wickner 1983, Esteban and Wickner
207 1988).

208

209 **Host/virus co-evolutionary dynamics are complex and operate over multiple scales**

210 To compare the dynamics of viral genome evolution, nuclear genome evolution, and phenotypic
211 evolution we performed time-course sequencing of viral genomes from three yeast populations that lost
212 killing ability and for which we have whole-population, whole-genome, time-course sequencing data for
213 the nuclear genome (Lang et al. 2013). As with the evolutionary dynamics of the host genome, the
214 dynamics of viral genome evolution feature clonal interference (competition between mutant genotypes),
215 genetic hitchhiking (an increase in frequency of an allele due to genetic linkage to a beneficial mutation),
216 and sequential sweeps (Figure 4, Figure 4-figure supplement 1). Interestingly, viral sweeps often coincide
217 with nuclear sweeps. Since the coinciding nuclear sweeps often contain known driver mutations, it is
218 possible that the viral variants themselves are not driving adaptation but instead hitchhiking on the back
219 of beneficial nuclear mutations. This is consistent with the observation that the introduction of the viral
220 variant from the Intermediate clone did not affect the fitness of the Early clone (Figure 1B)

221 To determine if the loss of killer phenotype is caused solely by mutations in the killer virus, we
222 transferred the ancestral virus (K^+I^+) and five evolved viral variants into the virus-cured Early clone via
223 cytoduction (Figure 5A). The five viral variants were selected to span the range of evolved killer
224 phenotypes: one exhibited weak killing ability and full immunity (K^wI^+ : D253N), three exhibited no
225 killing ability and full immunity (KI^+ : P47S, D106G, I292M), and one exhibited neither killing ability
226 nor immunity (KI^- : -1 frameshift). Following cytoduction, we observed that the killer phenotype of each
227 cytoductant matched the killer phenotype of the population of origin, which demonstrates that viral
228 mutations are sufficient to explain changes in killer phenotypes (Figure 5-figure supplement 1).

229 To determine if any viral variants affect host fitness, we competed all five cytductants against
230 the killer-containing Early clone (K^+I^+) and the virus-cured Early clone (KI). Frequency-dependent
231 selection was observed in all cases in which one competitor exhibited killing ability and the other
232 competitor lacked immunity (Figure 5A). For example, cytductants containing either the ancestral virus
233 or the weak-killing D253N variant exhibited a frequency dependent advantage over the virus-cured Early
234 clone. However, in all competitions where the killer-associated phenotypes were compatible, host fitness
235 was not impacted by the specific viral variant, or even by the presence of the virus itself. These data
236 suggest that production of active toxin and maintenance of the virus have no detectable fitness costs to the
237 host. These findings support previous theoretical and empirical studies (Pieczynska et al. 2016,
238 Pieczynska et al. 2017) that claim that mycoviruses and their hosts have co-evolved to minimize cost.

239

240 **Success of evolved viral variants is due to an intracellular fitness advantage**

241 Based on the lack of a measurable effect of viral mutations on host fitness when killing-mediated
242 interactions are absent, we hypothesized that the evolved viral variants may have a selective advantage
243 within the viral population of individual yeast cells. A within-cell advantage has been invoked to explain
244 the invasion of internal deletion variants (e.g. ScV-S (Kane et al. 1979)) but has not been extended to
245 point mutations. To test evolved viral variants for a within-cell fitness advantage, we generated a
246 heteroplasmic diploid strain by mating the ancestor (with wildtype virus) with a haploid cytductant
247 containing either the I292M (KI^+) or -1 frameshift (KI) viral variant. The heteroplasmic diploids were
248 propagated for seven single-cell bottlenecks every 48 hours to minimize among-cell selection. At each
249 bottleneck, we assayed the yeast cells for killer phenotypes and we quantified the ratio of the intracellular
250 viral variants by RT-PCR and sequencing. We find that killing ability was lost from all lines, suggesting
251 that the evolved viral variants outcompeted the ancestral variant (Figure 5B). Sequencing confirmed that
252 the derived viral variant fixed in most lines (Figure 5C). In some lines, however, the derived viral variant
253 increased initially before decreasing late. Further investigation into one of these lines revealed that the
254 decrease in frequency of the viral variant corresponded to the sweep of a *de novo* G131D variant (Figure

255 5C, inset). Viral variants therefore appear to constantly arise, and the evolutionary success of the observed
256 variants results from their selective advantage over viral competitors within the context of an individual
257 cell. We speculate that an intracellular competition between newly arising viral variants also explains the
258 loss of immunity from populations that previously lost killing ability (Figure 2-figure supplement 1),
259 given the relaxed selection for the maintenance of functional immunity in those populations.

260

261 **Discussion**

262 We examined phenotypic and sequence co-evolution of an intracellular double-stranded RNA
263 virus and the host nuclear genome over the course of 1,000 generations of experimental evolution. We
264 observe complex dynamics including genetic hitchhiking and clonal interference in the host populations
265 as well as the intracellular viral populations. Phenotypic and genotypic changes including the loss of
266 killing ability, mutations in the host-encoded cell-wall biosynthesis genes, and the virally encoded toxin
267 genes occur repeatedly across replicate populations. The loss of killer-associated phenotypes—killing
268 ability and immunity to the killer toxin—leads to three phenomena with implications for adaptive
269 evolution: positive frequency-dependent selection, multilevel selection, and nontransitivity.

270 Frequency-dependent selection can be either negative, where rare genotypes are favored, or
271 positive, where rare genotypes are disfavored. Of the two, negative frequency-dependent selection is more
272 commonly observed in experimental evolution, arising, for example, from nutrient cross-feeding (Helling
273 et al. 1987, Turner et al. 1996, Spencer et al. 2008, Kinnersley et al. 2014, Plucain et al. 2014, Green et al.
274 2020) and spatial structuring (Rainey and Travisano 1998, Frenkel et al. 2015). Positive frequency-
275 dependent selection, in contrast, is not typically observed in experimental evolution. By definition, a new
276 positive frequency-dependent mutation must invade an established population at a time when its fitness is
277 at its minimum. Even in situations in which positive frequency-dependent selection is likely to occur,
278 such as the evolution of cooperative group behaviors and interference competition (Chao and Levin
279 1981), a mutation may be unfavorable at the time it arises. A crowded, structured environment provides

280 an opportunity for allelopathies to offer a local advantage. Here we describe an alternative mechanism for
281 the success of positive frequency-dependent mutations through multilevel selection of the host genome
282 and a toxin-encoding intracellular virus. The likelihood of such a scenario occurring is aided by the large
283 population size of the extrachromosomal element: each of the $\sim 10^5$ cells that comprise each yeast
284 population contains $\sim 10^2$ viral particles (Bostian et al. 1983, Ridley and Wickner 1983).

285 Nontransitivity in our experimental system is due, in part, to interference competition. The
286 production of a killer toxin by the Early clone kills the toxin-susceptible Late clone in a frequency-
287 dependent manner: higher starting frequencies of the Early clone result in higher concentrations of toxin
288 in the environment. Interference competition can drive ecological nontransitivity (Kerr et al. 2002, Kirkup
289 and Riley 2004), suggesting that similar mechanisms may underlie both ecological and genealogical
290 nontransitivity. The adaptive evolution of genealogical nontransitivity in our system does not follow the
291 canonical model of a co-evolutionary arms race where the host evolves mechanisms to prevent the selfish
292 replication of the virus and the virus evolves to circumvent the host's defenses (Daugherty and Malik
293 2012, Rowley 2017). Rather, mutations that fix in the viral and yeast populations do so because they
294 provide a direct fitness advantage in their respective populations. Nontransitivity arises through the
295 combined effect of beneficial mutations in the host genome (which improves the relative fitness within
296 the yeast population, regardless of the presence or absence of the killer virus) and the adaptive loss of
297 killing ability and degeneration of the intracellular virus (which provides an intracellular fitness
298 advantage to the virus). The end result is a high-fitness yeast genotype (relative to the ancestral yeast
299 genotype) that contains degenerate viruses, rendering their hosts susceptible to the virally-encoded toxin.

300 Though we did not find an impact of nuclear mutations on killer-associated phenotypes, we do
301 observe a statistical enrichment of mutations in genes involved in β -glucan biosynthesis and in genes that
302 when deleted confer a high level of resistance to the killer toxin. Nearly all mutations in these toxin-
303 resistance genes are nonsynonymous (18 nonsense/frameshift, 21 missense, 1 synonymous), indicating a
304 strong signature of positive selection. This suggests that the nuclear genome adapting in response to the

305 presence of the killer toxin, however, the effect of these mutations may be beyond the resolution of our
306 fitness assay.

307 Among the viral variants, we identified were two unique ~1 kb deletions; remnants of the killer
308 virus that retain little more than the *cis*-acting elements necessary for viral replication and packaging.
309 These defective interfering particles are thought to outcompete full-length virus due to their decreased
310 replication time (Kane et al. 1979, Ridley and Wickner 1983, Esteban and Wickner 1988). Defective
311 interfering particles are common to RNA viruses (Holland et al. 1982). Though there are several different
312 killer viruses in yeast (e.g. K1, K2, K28, Klus), each arose independently and has a distinct mechanism of
313 action (Rodríguez-Cousiño et al. 2017). Nontransitive interactions may therefore arise frequently through
314 cycles of gains and losses of toxin production and toxin immunity in lineages that contain RNA viruses.

315 Reports of nontransitivity arising along evolutionary lines of descent are rare (de Visser and
316 Lenski 2002, Beaumont et al. 2009). The first (and most widely cited) report of nontransitivity along a
317 direct line of descent occurred during yeast adaptation in glucose-limited chemostats (Paquin and Adams
318 1983). This experiment was correctly interpreted under the assumption—generally accepted at the time—
319 that large asexual populations evolved by clonal replacement, where new beneficial mutations arise and
320 quickly sweep to fixation. This strong selection/weak mutation model, however, is now known to be an
321 oversimplification for large asexual populations, where multiple beneficial mutations arise and spread
322 simultaneously through the population leading to extensive clonal interference (Gerrish and Lenski 1998,
323 Kvitek and Sherlock 2013, Lang et al. 2013). In addition, the duration of the Paquin and Adams
324 experiment was too short for the number of reported selective sweeps to have occurred (four in 245
325 generations and six in 305 generations, for haploids and diploids, respectively). The strongest known
326 beneficial mutations in glucose-limited chemostats, hexose transporter amplifications, provide a fitness
327 advantage of ~30% (Gresham et al. 2008, Kvitek and Sherlock 2011) and would require a minimum of
328 ~150 generations to fix in a population size of 4×10^9 (Otto and Whitlock 1997). We contend that Paquin
329 and Adams observed nontransitive interactions among contemporaneous lineages—ecological
330 nontransitivity—rather than nontransitivity among genealogical descendants. Apart from the present

331 study, there are no other examples of nontransitivity arising along a line descent, but numerous examples
332 of nontransitive interactions among contemporaneous lineages (Sinervo and Lively 1996, Kerr et al. 2002,
333 Kirkup and Riley 2004, Károlyi et al. 2005, Laird and Schamp 2006, Reichenbach et al. 2007, Precoda et
334 al. 2017, Menezes et al. 2019).

335 Here we present a mechanistic case study on the evolution of nontransitivity along a direct line of
336 genealogical descent. We determine the specific nuclear and viral changes that lead to nontransitivity in
337 our focal population (Figure 6). Our results show that the continuous action of selection can give rise to
338 genotypes that are less fit compared to a distant ancestor. We show that nontransitive interactions can
339 arise quickly due to multilevel selection in a host/virus system. In the context of this experiment multi-
340 level selection is common—most yeast populations fix nuclear and viral variants by Generation 1,000.
341 Overall, our results demonstrate that adaptive evolution is capable of giving rise to nontransitive fitness
342 interactions along an evolutionary lineage, even under simple laboratory conditions.

343

344 **Acknowledgments:** We thank Reed Wickner, Amber Rice, and members of the Lang Lab for their
345 comments on the manuscript. This work was supported by the NIH grant 1R01GM127420 (G.I.L) and a
346 Faculty Innovation Grant from Lehigh University (G.I.L.). Illumina data of viral competitions and
347 evolved nuclear genomes are accessible under the BioProject ID PRJNA553562 and PRJNA205542,
348 respectively. Conceptualization and writing were performed by S.W.B. and G.I.L. Investigation was
349 performed by S.W.B. and A.B.R.

350

351 **Methods**

Key Resources Table				
Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information

Strain, strain background (<i>Saccharomyces cerevisiae</i>)	yGIL432	First reported in Lang et al. 2011	Early clone / Ancestor of evolution experiment	Lang Lab strain collection
Strain, strain background (<i>Saccharomyces cerevisiae</i>)	yGIL519	First reported in Lang et al. 2011	ymCitrine reference strain	Lang Lab strain collection
Strain, strain background (<i>Saccharomyces cerevisiae</i>)	yGIL1582	This paper	Intermediate clone	Lang Lab strain collection
Strain, strain background (<i>Saccharomyces cerevisiae</i>)	yGIL1042	This paper	Late clone	Lang Lab strain collection
Strain, strain background (<i>Saccharomyces cerevisiae</i>)	yGIL1097	This paper	Sensitive tester strain	Lang Lab strain collection
Strain, strain background (<i>Saccharomyces cerevisiae</i>)	yGIL1253	This paper	Early clone / Ancestor (M1 cured)	Lang Lab strain collection
Strain, strain background (<i>Saccharomyces cerevisiae</i>)	yGIL1353	This paper	<i>kar1Δ15</i> mating partner	Lang Lab strain collection
Recombinant DNA reagent	pMR1593	Mark Rose (Georgetown University)	<i>kar1Δ15</i> integrating plasmid	ATCC (87710)

Sequence-based reagent	M1_F1	This paper	PCR (Sanger sequencing)	TTGGCTATTAC AGCGTGCCA
Sequence-based reagent	M1_F5	This paper	PCR (Sanger sequencing)	ATGACGAAGC CAACCCAAGT
Sequence-based reagent	M1_F7	This paper	PCR (Sanger sequencing)	CAGAAAAAGA GAGAACAGGA C
Sequence-based reagent	M1_R3	This paper	cDNA synthesis, PCR (Sanger sequencing)	TGCTGTTGCAT TAAACCAGGC
Sequence-based reagent	M1_R6	This paper	PCR (Sanger sequencing)	ATAGCCCGGT GCTCTGTAGG
Sequence-based reagent	LA_F2	This paper	PCR (Sanger sequencing)	ATCAGGTGAT GCAGCGTTGA
Sequence-based reagent	LA_F3	This paper	PCR (Sanger sequencing)	ACTCCCCATG CTAAGATTGT T
Sequence-based reagent	LA_R2	This paper	PCR (Sanger sequencing)	CGGCACCCTT ACGGAGATAC
Sequence-based reagent	LA_R3	This paper	PCR (Sanger sequencing)	GACCTGTAATG CCCGGAGTG
Sequence-based reagent	LA_R6	This paper	PCR (Sanger sequencing)	AGTACTGAGC CCCAAGACCA

Sequence-based reagent	I292M_read1	This paper	PCR (Illumina sequencing)	CGTCGGCAGC GTCAGATGTGT ATAAGAGACA GNNNNNNNNC CATGGTGTG GCTAATGGT
Sequence-based reagent	I292M_read2	This paper	PCR (Illumina sequencing)	CGTGGGCTCG GAGATGTGTAT AAGAGACAGA GGTCAGACAC GATGCCCTA
Sequence-based reagent	frameshift_read1	This paper	PCR (Illumina sequencing)	CGTCGGCAGC GTCAGATGTGT ATAAGAGACA GNNNNNNNNC CCGCTCTGCGA CAGTAGAAA
Sequence-based reagent	frameshift_read2	This paper	PCR (Illumina sequencing)	CGTGGGCTCG GAGATGTGTAT AAGAGACAGT GTGTAAGAACT GCGTGGGT
Sequence-based reagent	i5_adapter	This paper	PCR (Illumina sequencing)	AATGATAACGG CGACCACCGA GATCTACACNN NNNNNNTCGT CGGCAGCGTC AGATG
Sequence-based reagent	i7_adapter	This paper	PCR (Illumina sequencing)	CAAGCAGAAG ACGGCATAACG AGATNNNNNN NNGTCTCGTG GGCTCGGAGA TGTG

352

353 Experimental Evolution

354 Details of the evolution experiment have been described previously (Lang et al. 2011). Briefly,
 355 population BYS1-D08 is one of ~600 populations that were evolved for 1,000 generations at 30°C in
 356 YPD + A&T (yeast extract, peptone, dextrose plus 100 µg/ml ampicillin and 25 µg/ml tetracycline to
 357 prevent bacterial contamination). Each day populations were diluted 1:2¹⁰ into 128 µl of YPD + A&T in

358 round-bottom 96-well plates using a BiomekFX liquid handler. The dilution scheme equates to 10
359 generations of growth per day at an effective population size of $\sim 10^5$.

360 Growth Conditions and Strain Construction

361 Unless specified otherwise, yeast strains were propagated at 30°C in YPD + A&T. The ancestor
362 and evolved populations were described previously (Lang et al. 2011). Early, Intermediate, and Late
363 clones were isolated by resurrecting population BYS1-D08 at the Generation 0, 335, and 1,000,
364 respectively. These specific timepoints were selected to coincide with the completion of a selective sweep
365 (Lang et al. 2013), when the population is expected to be near clonal. For each timepoint we isolated
366 multiple clones from a YPD plate and assayed each one to verify that the killer phenotype was uniform.

367 The ancestral strain was cured of the M1 and LA viruses by streaking to single colonies on YPD
368 agar and confirmed by halo assay, PCR, and sequencing. We integrated a constitutively-expressed
369 fluorescent reporter (pACT1-ymCitrine) at the *CAN1* locus in the cured ancestral strain as well as the
370 Intermediate (Generation 335) and Late (Generation 1,000) clones.

371 Karyogamy mutants were constructed by introducing the *kar1Δ15* allele by two-step gene
372 replacement in the cured a *MATα* version of the ancestor (Georgieva and Rothstein 2002). The *kar1Δ15*-
373 containing plasmid pMR1593 (Mark Rose, Georgetown University) was linearized with BglII prior to
374 transformation and selection on -Ura. Mitotic excision of the integrated plasmid was selected for plating
375 on 5-fluorotic acid (5-FOA). Then we performed replaced NatMX with KanMX to enable selection for
376 recipients during viral transfer.

377 Fitness Assays

378 Competitive fitness assays were performed as described previously (Lang et al. 2011, Lang et al.
379 2013). To investigate frequency dependence, competitors were mixed at various ratios at the initiation of
380 the experiment. Competitions were performed for 50 generations under conditions identical to the
381 evolution experiment (Lang et al. 2011). Every 10 generations, competitions were diluted 1:1,000 in fresh
382 media and an aliquot was sampled by BD FACS Canto II flow cytometer. Flow cytometry data was
383 analyzed using FlowJo 10.3. Relative fitness was calculated as the slope of the change in the natural log

384 ratio between the experimental and reference strain. To detect frequency-dependent selection, each 10-
385 generation interval was analyzed independently to calculate starting frequency and fitness.

386 **Halo Assay**

387 Killer phenotype was measured using a high-throughput version of the standard halo assay
388 (Crabtree et al. 2019) and a liquid handler (Biomek FX). Assays were performed using YPD agar that had
389 been buffered to pH 4.5 (citrate-phosphate buffer), dyed with methylene blue (0.003%), and poured into a
390 1-well rectangular cell culture plate.

391 Killing ability was assayed against a sensitive tester strain (yGIL1097) that was isolated from a
392 separate evolution experiment initiated from the same ancestor. The sensitive tester was grown to
393 saturation, diluted 1:10, and spread (150 μ L) evenly on the buffered agar. Query strains were grown to
394 saturation, concentrated 5x, and spotted (2 μ L) on top of the absorbed lawn (Figure 1-figure supplement
395 2, left).

396 Immunity was assayed against the ancestral strain (yGIL432). Query strains were grown to
397 saturation, diluted 1:32, and spotted (10 μ L) on the buffered agar. The killer tester was grown to
398 saturation, concentrated 5x, and spotted (2 μ L) on top of the absorbed query strain (Figure 1-figure
399 supplement 2, right).

400 Plates were incubated at room temperature for 2-3 days before assessment. Killer phenotype was scored
401 according to the scale in shown in Figure 2.

402 **Viral RNA Isolation, cDNA Synthesis, PCR**

403 Nucleic acids were isolated by phenol-chloroform extraction and precipitated in ethanol. Isolated
404 RNA was reverse-transcribed into cDNA using ProtoScript II First Strand cDNA Synthesis Kit (NEB)
405 with either the enclosed Random Primer Mix or the M1-specific oligo M1_R3 (Table S3).

406 **Sanger Sequencing and Bioinformatics Analyses**

407 PCR was performed on cDNA using Q5 High-Fidelity Polymerase (NEB). The K1 ORF was
408 amplified using primers M1_F1 or M1_F5 and M1_R6 (Table S3). The M1 region downstream of the

409 polyA stretch was amplified using M1_F7 and M1_R3. The LA virus was amplified using LA_F2 and
410 LA_R2, LA_F2 and LA_R3, or LA_F3 and LA_R6. PCR products were Sanger sequenced by Genscript.

411 Mutations were identified and peak height quantified using 4Peaks (nucleobytess). For
412 intracellular competitions, mutation frequency was quantified by both Sanger and Illumina sequencing
413 (see below), with both methods producing nearly identical results (Figure 5-figure supplement 2).

414 The Sanger sequencing data was aligned to publicly-available M1 and LA references (GenBank
415 Accession Numbers U78817 and J04692, respectively) using ApE (A plasmid Editor). The ancestral M1
416 and LA viruses differed from the references at 7 sites (including 3 K1 missense mutations) and 19 sites,
417 respectively (Figure 3-figure supplement 1).

418 Viral Transfer

419 Viruses were transferred to *MAT α* strains using the *MAT α* karyogamy mutant as an intermediate.
420 Viral donors (*MAT α* , *ura3*, NatMX) were first transformed with the pRS426 (*URA3*, 2 μ ORI) for future
421 indication of viral transfer. Cytoduction was performed by mixing a viral donor with the karyogamy
422 mutant recipient (*MAT α* , *ura3*, KanMX) at a 5:1 ratio on solid media. After a 6 hr incubation at 30°C, the
423 cells were plated on media containing G418 to select for cells with the recipient nuclei. Recipients that
424 grew on -Ura (indicator of cytoplasmic mixing) and failed to grow on ClonNat (absence of donor nuclei)
425 then served as donors for the next cytoduction. These karyogamy mutant donors (*MAT α* , *URA3*, KanMX)
426 were mixed with the selected recipient (*MAT α* , *ura3*, NatMX) at a 5:1 ratio on solid media. After a 6 hr
427 incubation at 30°C, the cells were plated on media containing ClonNat to select for cells with recipient
428 nuclei. Recipients that grew on -Ura (indicator of cytoplasmic mixing) and failed to grow on ClonNat
429 (absence of the donor nucleus) were then cured of the indicator plasmid by selection on 5-FOA. Killer
430 phenotype was confirmed by halo assays and the presence of the viral variants in the recipient was
431 verified by Sanger sequencing.

432 Illumina Sequencing and Bioinformatics Analyses

433 Multiplexed libraries were prepared using a two-step PCR. First, cDNA was amplified by Q5
434 High-Fidelity Polymerase (NEB) for 10 cycles using primers I292M_read1 and I292M_read2 or

435 frameshift_read1 and frameshift_read2 (Table S3) to incorporate a random 8 bp barcode and sequencing
436 primer binding sites. The resulting amplicons were further amplified by Q5 PCR for 15 cycles using
437 primers i5_adapter and i7_adapter to incorporate the sequencing adaptors and indices. Libraries were
438 sequenced on a NovaSeq 6000 (Illumina) at the Genomics Core Facility at Princeton University.

439 Raw FASTQ files were demultiplexed using a dual-index barcode splitter
440 (https://bitbucket.org/princeton_genomics/barcode_splitter) and trimmed using Trimmomatic (Bolger et
441 al. 2014) with default settings for paired-end reads. Mutation frequencies were determined by counting
442 the number of reads that contain the ancestral or evolved allele (mutation flanked by five nucleotides).

443 **Intracellular Competitions**

444 Within-cell viral competitions were performed by propagating a heteroplasmic diploid and
445 monitoring killer phenotype and viral variant frequency. Diploids were generated by crossing the ancestor
446 with a cytoductant harboring either the I292M or -1 frameshift viral variant. For each viral variant, three
447 diploid lines (each initiated by a unique mating event) were passaged every other day on buffered YPD
448 media for a total of 7 single-cell bottlenecks to minimize among-cell selection. A portion of each
449 transferred colony was cryopreserved in 15% glycerol. Cryosamples were revived, assayed for killer
450 phenotype, and harvested for RNA. Following RT-PCR, samples were sent for Sanger sequencing and
451 Illumina sequencing. Variant frequency deviated from the expected frequency of 0.5 at the initial
452 timepoint, presumably due to an unavoidable delay between the formation of the heteroplasmic diploid
453 and initiation of the intracellular competition from a single colony. Alternatively, viral copy number may
454 vary between donor and recipient cells.

455

456 **References**

457

458 Allesina, S. and J. M. Levine (2011). "A competitive network theory of species diversity." Proceedings of
459 the National Academy of Sciences **108**(14): 5638-5642.
460 Barrick, J. E. and R. E. Lenski (2013). "Genome dynamics during experimental evolution." Nat Rev
461 Genet **14**(12): 827-839.

462 Beaumont, H. J., J. Gallie, C. Kost, G. C. Ferguson and P. B. Rainey (2009). "Experimental evolution of
463 bet hedging." Nature **462**(7269): 90-93.

464 Bolger, A. M., M. Lohse and B. Usadel (2014). "Trimmomatic: a flexible trimmer for Illumina sequence
465 data." Bioinformatics **30**(15): 2114-2120.

466 Bostian, K. A., S. Jayachandran and D. J. Tipper (1983). "A glycosylated protoxin in killer yeast: models
467 for its structure and maturation." Cell **32**(1): 169-180.

468 Buskirk, S. W., R. E. Peace and G. I. Lang (2017). "Hitchhiking and epistasis give rise to cohort
469 dynamics in adapting populations." Proceedings of the National Academy of Sciences **114**(31): 8330-
470 8335.

471 Chao, L. and B. R. Levin (1981). "Structured habitats and the evolution of anticompetitor toxins in
472 bacteria." Proceedings of the National Academy of Sciences **78**(10): 6324-6328.

473 Crabtree, A. M., E. A. Kizer, S. S. Hunter, J. T. Van Leuven, D. D. New, M. W. Fagnan and P. A.
474 Rowley (2019). "A rapid method for sequencing double-stranded RNAs purified from yeasts and the
475 identification of a potent K1 killer toxin isolated from *Saccharomyces cerevisiae*." Viruses **11**(1): 70.

476 Daugherty, M. D. and H. S. Malik (2012). "Rules of engagement: molecular insights from host-virus arms
477 races." Annual review of genetics **46**: 677-700.

478 Dawkins, R. (1997). Human chauvinism, Evolution **51**: 1015-1020.

479 de Visser, J. A. G. and R. E. Lenski (2002). "Long-term experimental evolution in *Escherichia coli*. XI.
480 Rejection of non-transitive interactions as cause of declining rate of adaptation." BMC Evolutionary
481 Biology **2**(1): 19.

482 Diamond, M., J. Dowhanick, M. Nemeroff, D. Pietras, C. Tu and J. Bruenn (1989). "Overlapping genes in
483 a yeast double-stranded RNA virus." Journal of virology **63**(9): 3983-3990.

484 Esteban, R. and R. B. Wickner (1988). "A deletion mutant of LA double-stranded RNA replicates like M1
485 double-stranded RNA." Journal of virology **62**(4): 1278-1285.

486 Fisher, K. J., S. W. Buskirk, R. C. Vignogna, D. A. Marad and G. I. Lang (2018). "Adaptive genome
487 duplication affects patterns of molecular evolution in *Saccharomyces cerevisiae*." PLoS genetics **14**(5):
488 e1007396.

489 Frenkel, E. M., M. J. McDonald, J. D. Van Dyken, K. Kosheleva, G. I. Lang and M. M. Desai (2015).
490 "Crowded growth leads to the spontaneous evolution of semistable coexistence in laboratory yeast
491 populations." Proceedings of the National Academy of Sciences **112**(36): 11306-11311.

492 Georgieva, B. and R. Rothstein (2002). "Kar-mediated plasmid transfer between yeast strains: alternative
493 to traditional transformation methods." Methods in enzymology: 278-289.

494 Gerrish, P. J. and R. E. Lenski (1998). "The fate of competing beneficial mutations in an asexual
495 population." Genetica **102**: 127.

496 Gilpin, M. E. (1975). "Limit Cycles in Competition Communities." The American Naturalist **109**(965):
497 51-60.

498 Gould, S. J. (1985). "The paradox of the first tier: an agenda for paleobiology." Paleobiology **11**(1): 2-12.

499 Gould, S. J. (1996). Full House: The Spread of Excellence from Plato to Darwin. New York, Harmony
500 Books.

501 Gould, S. J. (1997). Self-help for a hedgehog stuck on a molehill, Evolution **51**: 1020-1023.

502 Green, R., L. Wang, S. F. Hart, W. Lu, D. Skelding, J. C. Burton, H. Mi, A. Capel, H. A. Chen and A. Lin
503 (2020). "Metabolic excretion associated with nutrient-growth dysregulation promotes the rapid evolution
504 of an overt metabolic defect." *bioRxiv*: 498543.

505 Greig, D. and M. Travisano (2008). "Density-dependent effects on allelopathic interactions in yeast."
506 *Evolution: International Journal of Organic Evolution* **62**(3): 521-527.

507 Gresham, D., M. M. Desai, C. M. Tucker, H. T. Jenq, D. A. Pai, A. Ward, C. G. DeSevo, D. Botstein and
508 M. J. Dunham (2008). "The repertoire and dynamics of evolutionary adaptations to controlled nutrient-
509 limited environments in yeast." *PLoS genetics* **4**(12).

510 Helling, R. B., C. N. Vargas and J. Adams (1987). "Evolution of *Escherichia coli* during growth in a
511 constant environment." *Genetics* **116**(3): 349-358.

512 Holland, J., K. Spindler, F. Horodyski, E. Grabau, S. Nichol and S. VandePol (1982). "Rapid evolution of
513 RNA genomes." *Science* **215**(4540): 1577-1585.

514 Icho, T. and R. B. Wickner (1989). "The double-stranded RNA genome of yeast virus LA encodes its
515 own putative RNA polymerase by fusing two open reading frames." *Journal of Biological Chemistry*
516 **264**(12): 6716-6723.

517 Jackson, J. and L. Buss (1975). "Alleopathy and spatial competition among coral reef invertebrates."
518 *Proceedings of the National Academy of Sciences* **72**(12): 5160-5163.

519 Kane, W., D. Pietras and J. Bruenn (1979). "Evolution of defective-interfering double-stranded RNAs of
520 the yeast killer virus." *Journal of virology* **32**(2): 692-696.

521 Károlyi, G., Z. Neufeld and I. Scheuring (2005). "Rock-scissors-paper game in a chaotic flow: The effect
522 of dispersion on the cyclic competition of microorganisms." *Journal of theoretical biology* **236**(1): 12-20.

523 Kerr, B., M. A. Riley, M. W. Feldman and B. J. Bohannan (2002). "Local dispersal promotes biodiversity
524 in a real-life game of rock–paper–scissors." *Nature* **418**(6894): 171-174.

525 Kinnersley, M., J. Wenger, E. Kroll, J. Adams, G. Sherlock and F. Rosenzweig (2014). "Ex uno plures:
526 clonal reinforcement drives evolution of a simple microbial community." *PLoS Genet* **10**(6): e1004430.

527 Kirkup, B. C. and M. A. Riley (2004). "Antibiotic-mediated antagonism leads to a bacterial game of
528 rock–paper–scissors in vivo." *Nature* **428**(6981): 412-414.

529 Kvitek, D. J. and G. Sherlock (2011). "Reciprocal sign epistasis between frequently experimentally
530 evolved adaptive mutations causes a rugged fitness landscape." *PLoS genetics* **7**(4).

531 Kvitek, D. J. and G. Sherlock (2013). "Whole genome, whole population sequencing reveals that loss of
532 signaling networks is the major adaptive strategy in a constant environment." *PLoS genetics* **9**(11).

533 Laird, R. A. and B. S. Schamp (2006). "Competitive intransitivity promotes species coexistence." *The
534 American Naturalist* **168**(2): 182-193.

535 Lang, G. I., D. Botstein and M. M. Desai (2011). "Genetic variation and the fate of beneficial mutations
536 in asexual populations." *Genetics* **188**(3): 647-661.

537 Lang, G. I., D. P. Rice, M. J. Hickman, E. Sodergren, G. M. Weinstock, D. Botstein and M. M. Desai
538 (2013). "Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations."
539 *Nature* **500**(7464): 571-574.

540 Liao, M. J., M. O. Din, L. Tsimring and J. Hasty (2019). "Rock-paper-scissors: Engineered population
541 dynamics increase genetic stability." *Science* **365**(6457): 1045-1049.

542 Marad, D. A., S. W. Buskirk and G. I. Lang (2018). "Altered access to beneficial mutations slows
543 adaptation and biases fixed mutations in diploids." *Nature ecology & evolution* **2**(5): 882-889.

544 May, R. M. and W. J. Leonard (1975). "Nonlinear aspects of competition between three species." SIAM
545 journal on applied mathematics **29**(2): 243-253.

546 Menezes, J., B. Moura and T. Pereira (2019). "Uneven rock-paper-scissors models: Patterns and
547 coexistence." EPL (Europhysics Letters) **126**(1): 18003.

548 Otto, S. P. and M. C. Whitlock (1997). "The probability of fixation in populations of changing size."
549 Genetics **146**(2): 723-733.

550 Pagé, N., M. Gérard-Vincent, P. Ménard, M. Beaulieu, M. Azuma, G. J. Dijkgraaf, H. Li, J. Marcoux, T.
551 Nguyen and T. Dowse (2003). "A *Saccharomyces cerevisiae* genome-wide mutant screen for altered
552 sensitivity to K1 killer toxin." Genetics **163**(3): 875-894.

553 Paquin, C. E. and J. Adams (1983). "Relative fitness can decrease in evolving asexual populations of *S.*
554 *cerevisiae*." Nature **306**(5941): 368-371.

555 Petraitis, P. S. (1979). "Competitive networks and measures of intransitivity." The American Naturalist
556 **114**(6): 921-925.

557 Pieczynska, M., R. Korona and J. De Visser (2017). "Experimental tests of host-virus coevolution in
558 natural killer yeast strains." Journal of evolutionary biology **30**(4): 773-781.

559 Pieczynska, M. D., J. A. G. de Visser and R. Korona (2013). "Incidence of symbiotic dsRNA
560 'killer' viruses in wild and domesticated yeast." FEMS yeast research **13**(8): 856-859.

561 Pieczynska, M. D., D. Wloch-Salamon, R. Korona and J. A. G. de Visser (2016). "Rapid multiple-level
562 coevolution in experimental populations of yeast killer and nonkiller strains." Evolution **70**(6): 1342-
563 1353.

564 Plucain, J., T. Hindré, M. Le Gac, O. Tenaillon, S. Cruveiller, C. Médigue, N. Leiby, W. R. Harcombe, C.
565 J. Marx and R. E. Lenski (2014). "Epistasis and allele specificity in the emergence of a stable
566 polymorphism in *Escherichia coli*." Science **343**(6177): 1366-1369.

567 Precoda, K., A. P. Allen, L. Grant and J. S. Madin (2017). "Using traits to assess nontransitivity of
568 interactions among coral species." The American Naturalist **190**(3): 420-429.

569 Rainey, P. B. and M. Travisano (1998). "Adaptive radiation in a heterogeneous environment." Nature
570 **394**(6688): 69-72.

571 Reichenbach, T., M. Mobilia and E. Frey (2007). "Mobility promotes and jeopardizes biodiversity in
572 rock-paper-scissors games." Nature **448**(7157): 1046-1049.

573 Ribas, J. C., T. Fujimura and R. B. Wickner (1994). "Essential RNA binding and packaging domains of
574 the Gag-Pol fusion protein of the LA double-stranded RNA virus of *Saccharomyces cerevisiae*." Journal
575 of Biological Chemistry **269**(45): 28420-28428.

576 Ribas, J. C. and R. B. Wickner (1992). "RNA-dependent RNA polymerase consensus sequence of the LA
577 double-stranded RNA virus: definition of essential domains." Proceedings of the National Academy of
578 Sciences **89**(6): 2185-2189.

579 Ridley, S. P. and R. B. Wickner (1983). "Defective interference in the killer system of *Saccharomyces*
580 *cerevisiae*." Journal of virology **45**(2): 800-812.

581 Rodríguez-Cousío, N., P. Gómez and R. Esteban (2017). "Variation and distribution of LA helper
582 totiviruses in *Saccharomyces sensu stricto* yeasts producing different killer toxins." Toxins **9**(10): 313.

583 Rojas-Echenique, J. and S. Allesina (2011). "Interaction rules affect species coexistence in intransitive
584 networks." Ecology **92**(5): 1174-1180.

585 Rowley, P. A. (2017). "The frenemies within: viruses, retrotransposons and plasmids that naturally infect
586 *Saccharomyces* yeasts." *Yeast* **34**(7): 279-292.

587 Ruse, M. (1993). "Evolution and progress." *Trends in ecology & evolution* **8**(2): 55-59.

588 Schmitt, M. J. and F. Breinig (2002). "The viral killer system in yeast: from molecular biology to
589 application." *FEMS microbiology reviews* **26**(3): 257-276.

590 Schmitt, M. J. and F. Breinig (2006). "Yeast viral killer toxins: lethality and self-protection." *Nature*
591 *Reviews Microbiology* **4**(3): 212-221.

592 Shanahan, T. (2000). "Evolutionary progress?" *BioScience* **50**(5): 451-459.

593 Sinervo, B. and C. M. Lively (1996). "The rock–paper–scissors game and the evolution of alternative
594 male strategies." *Nature* **380**(6571): 240-243.

595 Soliveres, S., F. T. Maestre, W. Ulrich, P. Manning, S. Boch, M. A. Bowker, D. Prati, M. Delgado-
596 Baquerizo, J. L. Quero and I. Schöning (2015). "Intransitive competition is widespread in plant
597 communities and maintains their species richness." *Ecology letters* **18**(8): 790-798.

598 Spencer, C. C., J. Tyerman, M. Bertrand and M. Doebeli (2008). "Adaptation increases the likelihood of
599 diversification in an experimental bacterial lineage." *Proceedings of the National Academy of Sciences*
600 **105**(5): 1585-1589.

601 Suzuki, G., J. S. Weissman and M. Tanaka (2015). "[KIL-d] protein element confers antiviral activity via
602 catastrophic viral mutagenesis." *Molecular cell* **60**(4): 651-660.

603 Turner, P. E., V. Souza and R. E. Lenski (1996). "Tests of ecological mechanisms promoting the stable
604 coexistence of two bacterial genotypes." *Ecology* **77**(7): 2119-2129.

605 Van den Bergh, B., T. Swings, M. Fauvert and J. Michiels (2018). "Experimental design, population
606 dynamics, and diversity in microbial experimental evolution." *Microbiol. Mol. Biol. Rev.* **82**(3): e00008-
607 00018.

608 Wickner, R. B. (1976). "Killer of *Saccharomyces cerevisiae*: a double-stranded ribonucleic acid plasmid." *Bacteriological reviews* **40**(3): 757.

609 Woods, D. and E. Bevan (1968). "Studies on the nature of the killer factor produced by *Saccharomyces*
610 *cerevisiae*." *Microbiology* **51**(1): 115-126.

611

612

613 **Figure Legends**

614

615 Figure 1. Nontransitivity and positive frequency dependence arise along an evolutionary lineage. A)
616 Sequence evolution (from Lang *et al.* 2013) shows that population BYS1-D08 underwent four clonal
617 replacements over 1,000 generations. Mutations in the population that went extinct are not shown. The
618 four selective sweeps are color-coded: red, mutations in *yur1*, *rxt2*, and an intergenic mutation; green, a
619 single intergenic mutation; orange, mutations in *mpt5*, *gcn2*, *iml2*, *ste4*, *mud1*, and an intergenic mutation;
620 blue, three intergenic mutations. The Intermediate clone, isolated at Gen. 335 does not produce, but is
621 resistant to, the killer toxin (KT⁺). The Late clone, isolated at Generation 1,000 does not produce, and is
622 sensitive to, the killer toxin (KT). B) Competition experiments demonstrate nontransitivity and positive
623 frequency-dependent selection. Left: Relative fitness of Early (Gen. 0), Intermediate (Gen. 335), and Late
624 (Gen. 1,000) clones. Right: Relative fitness of the Early clone without ancestral virus or with the viral
625 variant from the Intermediate clone. Fitness and starting frequency correspond to the later clone relative
626 to the earlier clone during pairwise competitions.

627 Figure 2. Changes in killer-associated phenotypes in the 142 populations that were founded by a single
628 ancestor and propagated at the same bottleneck size as BYS1-D08 (Lang *et al.* 2011). A) Loss of killing
629 ability (top) and immunity (bottom) from evolving yeast populations over time. Killer phenotypes were
630 monitored by halo assay (examples shown on right). B) Breakdown of killer phenotypes for all
631 populations at Generation 1,000. Data point size corresponds to number of populations. Border and fill
632 color indicate killing ability and immunity phenotypes, respectively, as in panel A.

633 Figure 3. Loss of killer phenotype correlates with presence of mutations in the K1 toxin gene. A) Number
634 of mutations in the K1 gene in yeast populations that retain or lose killing ability. Each data point
635 represents a single yeast population. B) Observed spectrum of point mutations across the K1 toxin in 67
636 evolved yeast populations. Mutations were detected in a single population unless otherwise noted. Large
637 internal deletion variants from two yeast populations (BYS1-D06 and BYS2-E11). The deletions span the
638 region indicated by the dashed gray line. VBS: viral binding site. TRE: terminal recognition element.

639 Figure 4. Viral dynamics mimic nuclear dynamics. Killer phenotype of evolved populations is indicated
640 by color according to the key. Nuclear dynamics (reported previously Lang *et al.* 2014) are represented as
641 solid lines. Nuclear mutations that sweep before or during the loss of killing ability are indicated by black
642 lines. All other mutations are indicated by gray lines. Viral mutations are indicated by purple dashed lines
643 and labeled by amino acid change.

644 Figure 5. Viral evolution is driven by selection for an intracellular competitive advantage. A) Relative
645 fitness of viral variants in pairwise competition with the ancestor (K^+I^+) and virus-cured ancestor (KI).
646 Killer phenotype and identity of viral variant labeled above (K^w indicates weak killing ability). Killer
647 phenotype of the ancestral competitor labeled below. Starting frequency indicated by color. B) Change to
648 killer phenotype during intracellular competitions between viral variants (by color) and ancestral virus.
649 Replicate lines indicated by symbol. C) Variant frequency during intracellular competitions. Colors and
650 symbols consistent with panel B. Inset: frequency of the de novo G131D viral variant.

651 Figure 6. The sequence of events leading to the evolution of nontransitivity in population BYS1-D08.
652 Nontransitivity arises through multilevel selection requiring adaptive mutations in both the nuclear and
653 viral genomes. The Early clone (orange) produces, and is resistant to, killer toxin. Step 1: After 335
654 generations, the Intermediate clone (green) fixed three nuclear mutations including a beneficial mutation
655 in *yur1* and lost the ability to produce killer toxin due to intracellular competition between viral variants.
656 Step 2: After another 665 generations, the Late clone (purple) fixed an additional ten nuclear mutations
657 including a beneficial mutation in *ste4* and lost immunity to the killer toxin, which is no longer present in
658 the environment. Step 3: When brought into competition with the Early clone (1,000 generations
659 removed), the Late clone loses in a frequency-dependent manner due to killer toxin produced by the Early
660 clone. Positive frequency-dependent selection (PFDS) emerges in the competition because the fitness
661 disadvantage of the Late clone can be overcome if it starts the competition at high frequency relative to
662 the Early clone.

663 Figure 1-figure supplement 1. Positive frequency dependent interaction along an evolutionary lineage.
664 Fitness of Late clone relative to Early clone, as a function of frequency. Stable fixed points indicated by
665 closed black circles and unstable fixed point indicated by open black circle.

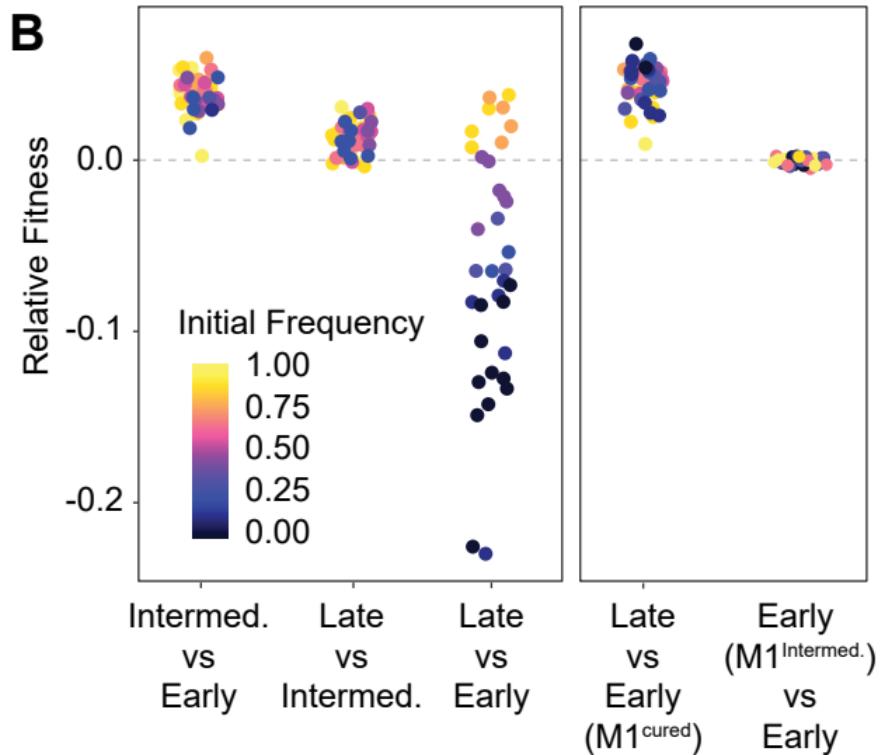
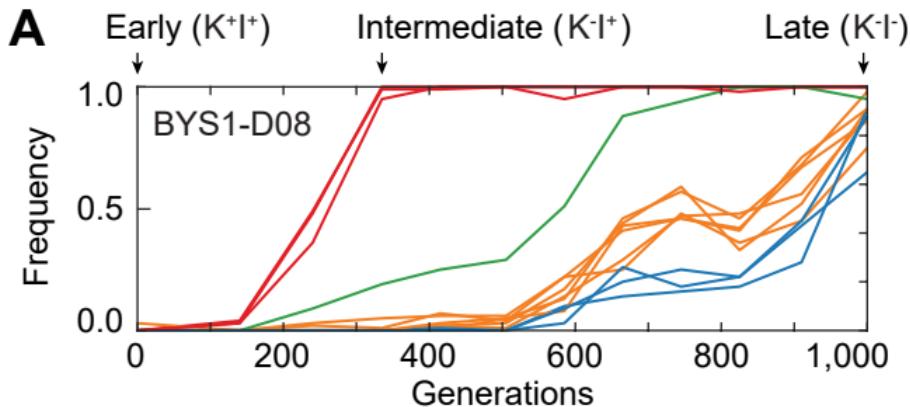
666 Figure 1-figure supplement 2. Visualization of killer phenotype by halo assay. A) Schematic of killer
667 phenotypic assays. To assay killing ability, a tester (sensitive) strain is spread as a lawn, followed by a
668 query strain spotted as a concentrated culture. After incubation, the production of a zone of clearing
669 indicates that the query strain possesses killing ability. To assay sensitivity, a query strain is plated as a
670 dilute spot, followed by a tester (killer) strain spotted as a concentrated culture. After incubation, the

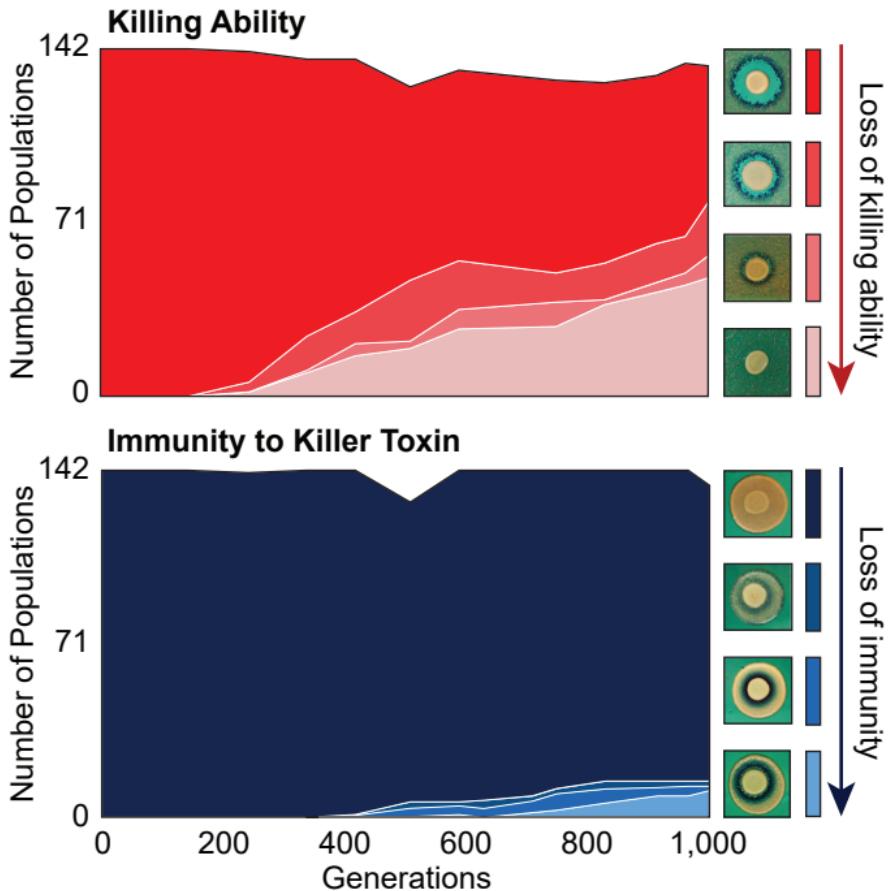
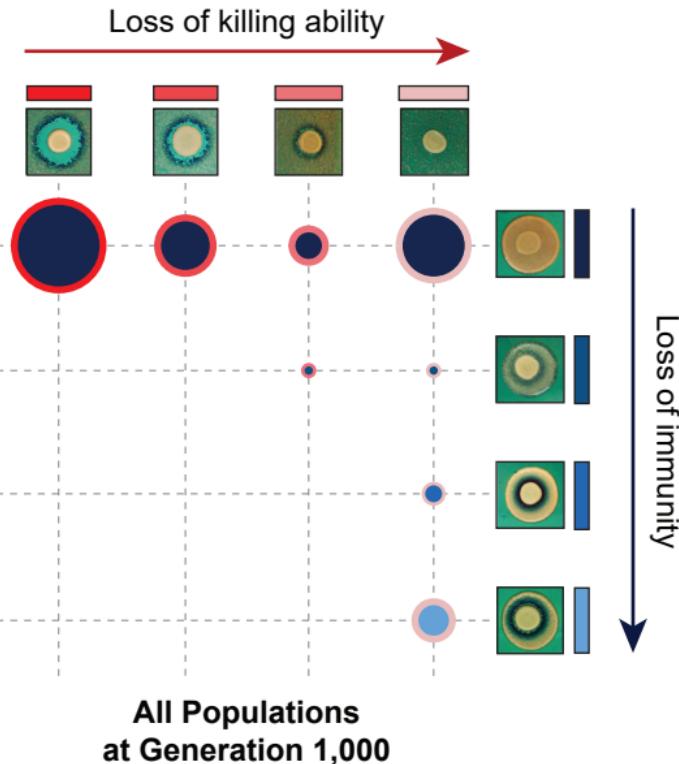
671 production of a zone of clearing indicates that the query strain possesses killing ability. B) Halo assays
672 demonstrate that the ancestor of the evolution experiment exhibits killing ability and immunity while the
673 cured ancestor lacks killing ability and is sensitive to the toxin.

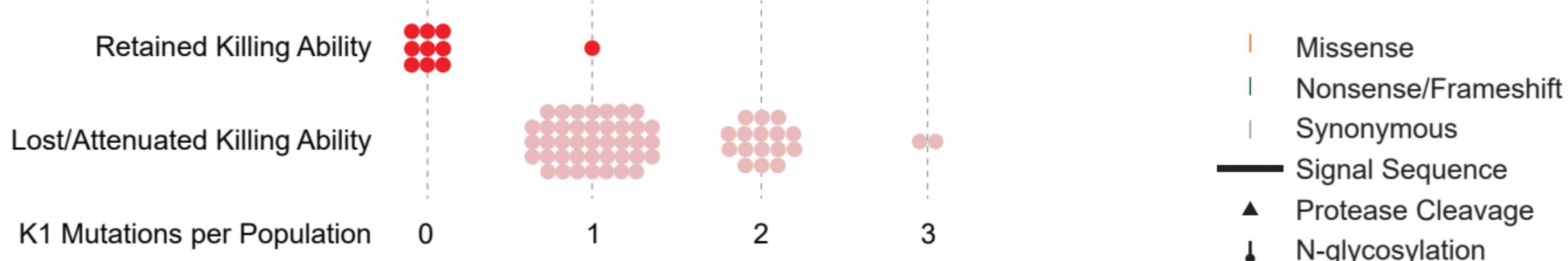
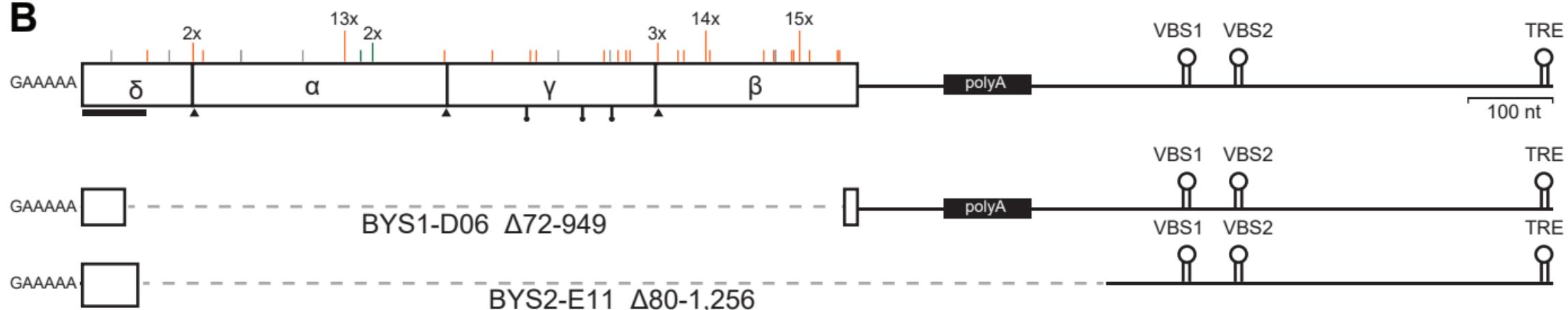
674 Figure 1-figure supplement 3. Stepwise deterioration of killer phenotype in evolved clones. The killer
675 phenotypes of Early, Intermediate, and Late clones from population BYS1-D08 were determined by halo
676 assay.

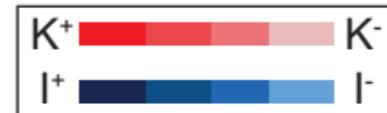
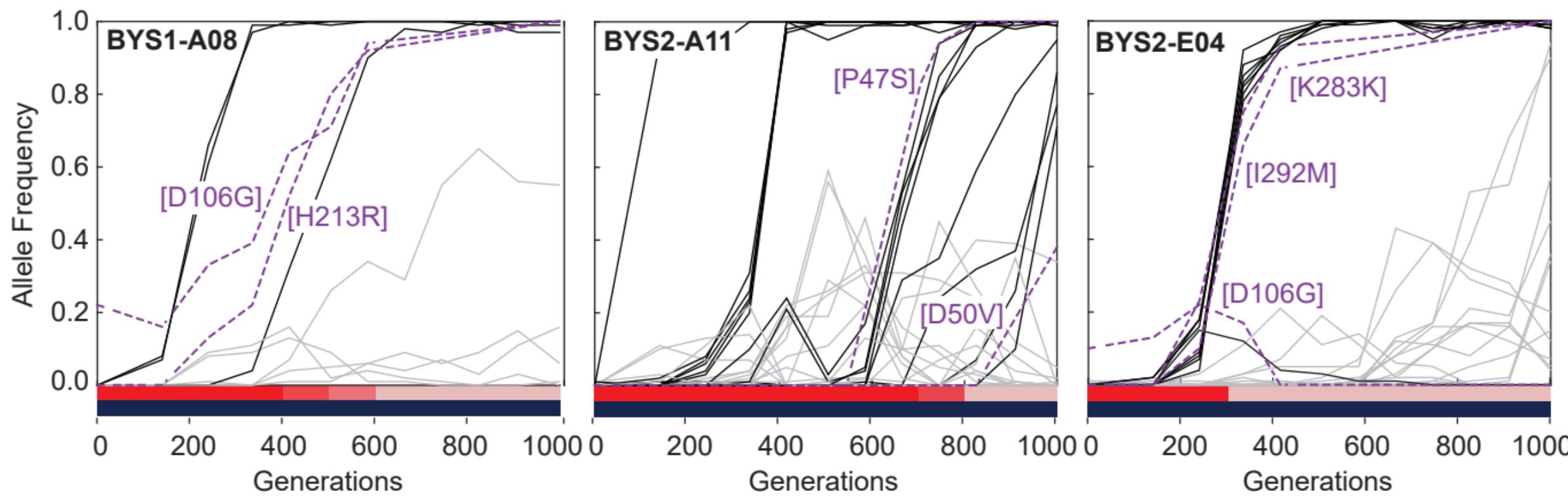
677 Figure 2-figure supplement 1. Killer phenotypes of the 17 populations that develop sensitivity to the K1
678 toxin. Killer phenotype is shown according to scale in Figure 2. For each population, killing ability is
679 shown in shades of red (top) and immunity in shades of blue (bottom).

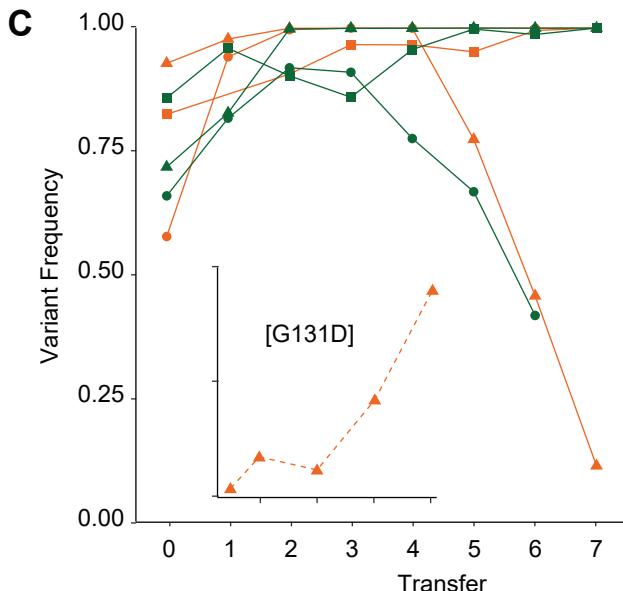
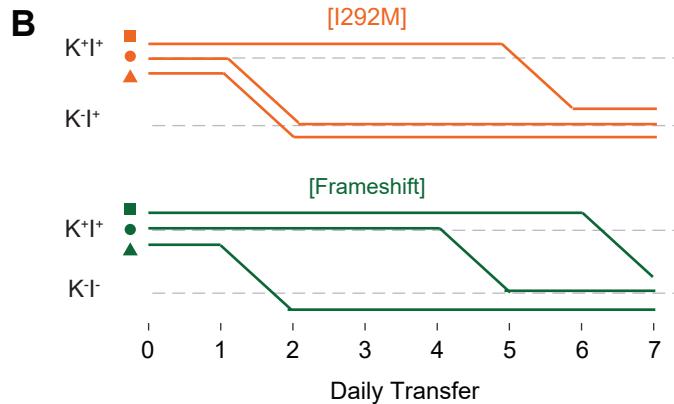
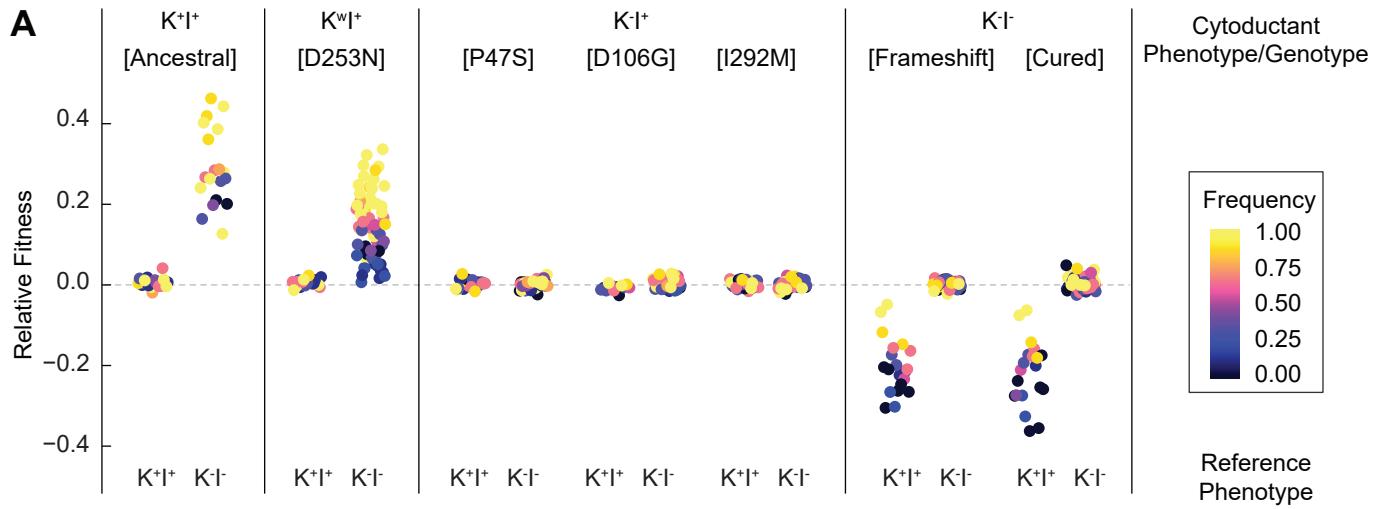
680 Figure 3-figure supplement 1. Sequence divergence of ancestral viruses. The viruses of our ancestral yeast
681 strain diverged from previously published LA and M1 genomes by 19 nucleotides and 7 nucleotides,
682 respectively. Solid lines represent nonsynonymous polymorphisms, labeled by amino acid substitution.
683 Dashed lines represent synonymous/intergenic polymorphisms.

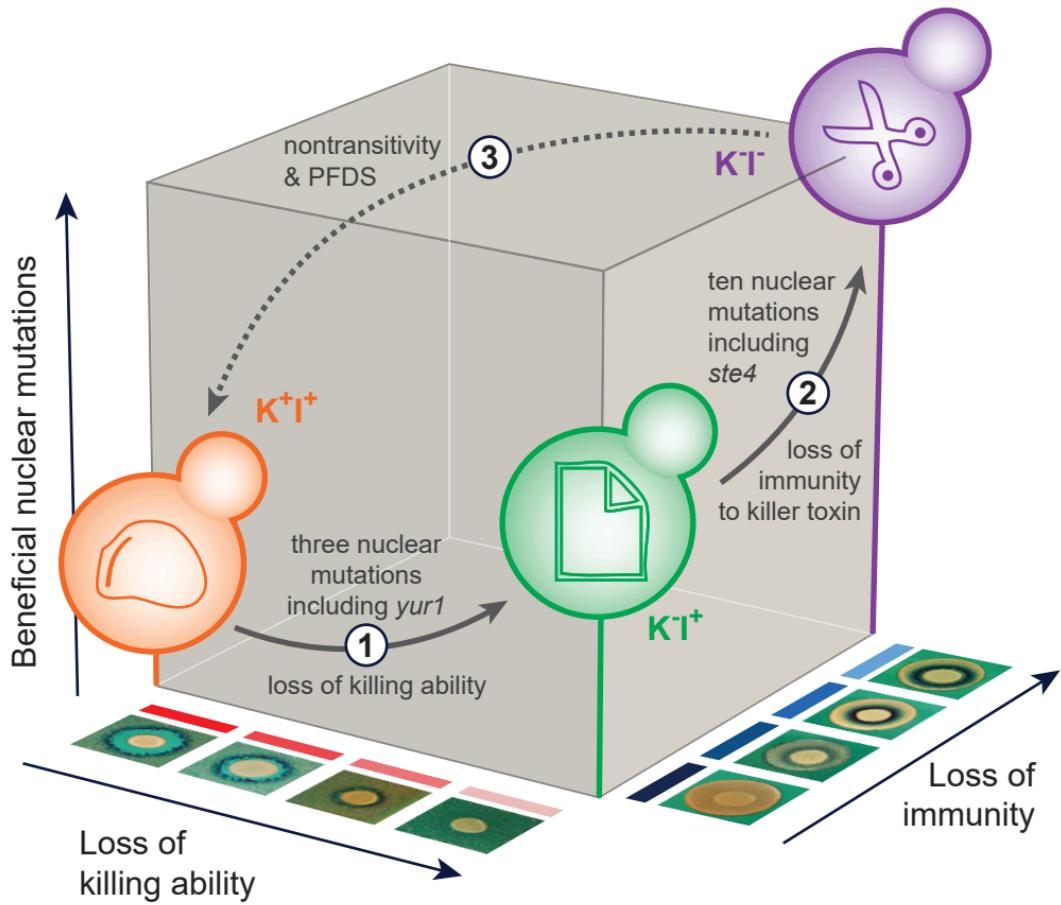


684 Figure 4-figure supplement 1. Evolutionary dynamics of nuclear genotypes and killer phenotypes over
685 time. The K1 mutations detected in each population at Generation 1,000 are indicated in the top-left of the
686 plot. Trajectories of nuclear mutations were obtained from Lang *et al.* 2013. Black lines indicate nuclear
687 mutations that swept up to and including the period of killer phenotypic change (all others nuclear
688 mutations are gray). Mutational cohorts are labeled according to their putative driver or putative toxin
689 resistance mutation. Killing ability and immunity are indicated in bar graph (bottom) by shades of red and
690 blue, respectively.

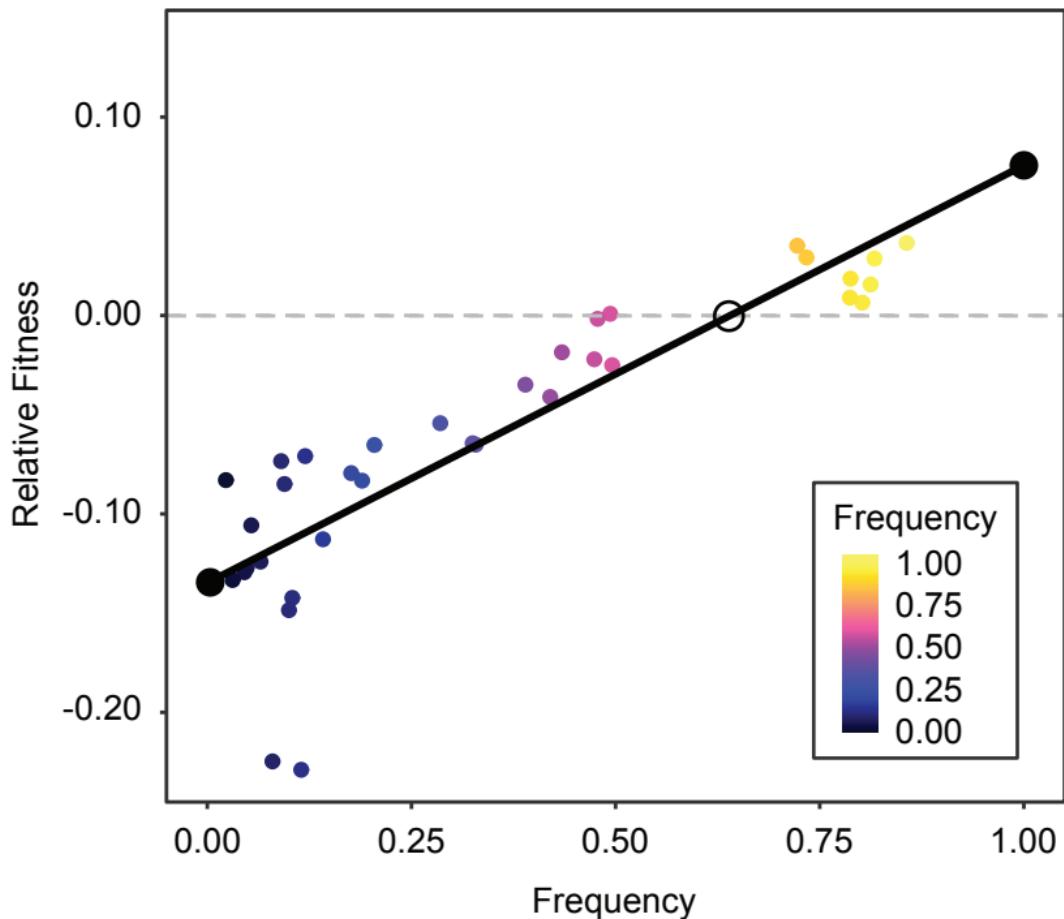


691 Figure 5-figure supplement 1. Cytoductants exhibit the same killer phenotype as the population of origin.
692 Viral variants were transferred from evolved populations to a cured ancestor. Halo assays demonstrate
693 that killer phenotypes were consistent between donor and recipient strains. Viruses were obtained from
694 the following evolved populations at Generation 1,000: BYS1-A03 (D253N), RMB1-A02 (P47S), BYB1-
695 H06 (D106G), BYS1-A05 (I292M), BYS2-B09 (frameshift). Populations RMB1-A02 and BYS2-B09
696 appear mixed given the observed speckling pattern.

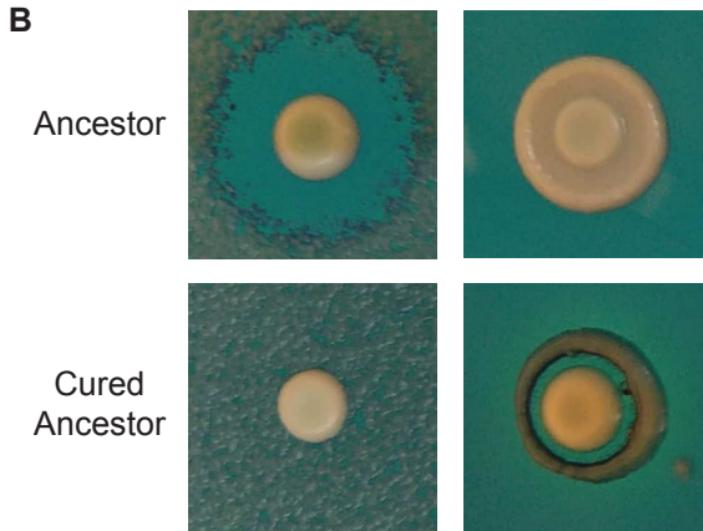
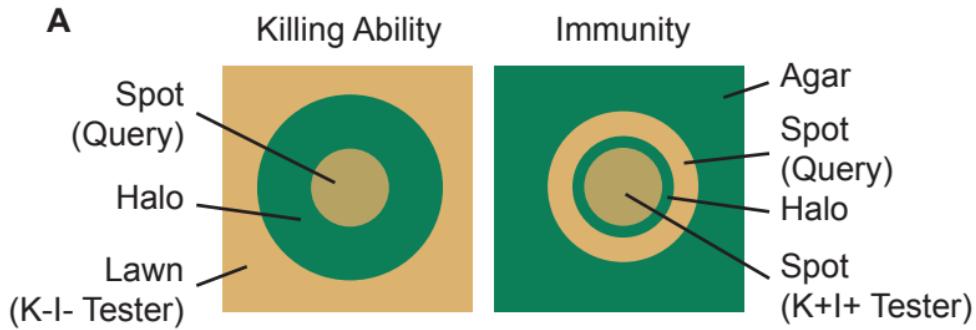


697 Figure 5-figure supplement 2. Consensus between Sanger and Illumina sequencing in reporting mutation
698 frequency. Intracellular competitions were tracked over time by both Sanger and Illumina sequencing.

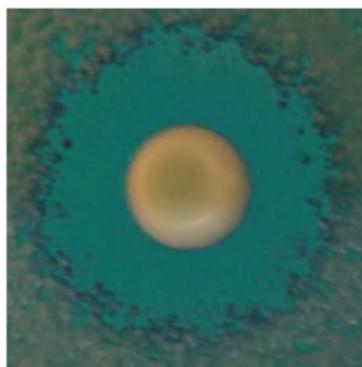


699 Supplementary File 1. Killer phenotype and K1 mutations in evolved yeast populations at Generation
700 1,000. A caret (^) indicates that a population is heteroplasmic for variants listed. An asterisk (*) indicates
701 that the mutation results in loss of PCR primer binding sites thereby preventing further characterization.




702 Supplementary File 2. Mutational biases in viral and nuclear datasets.




A**B**

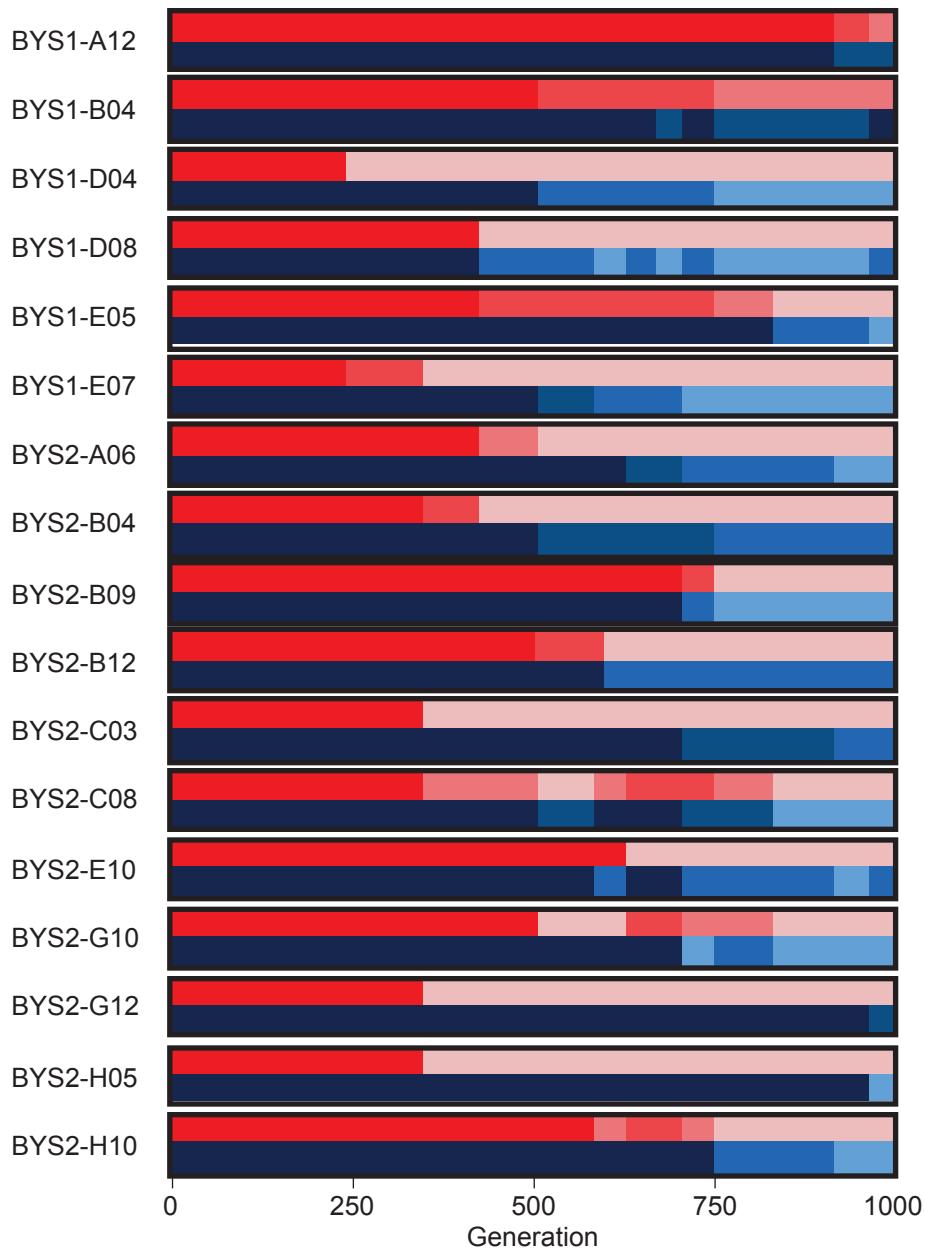


A**B**

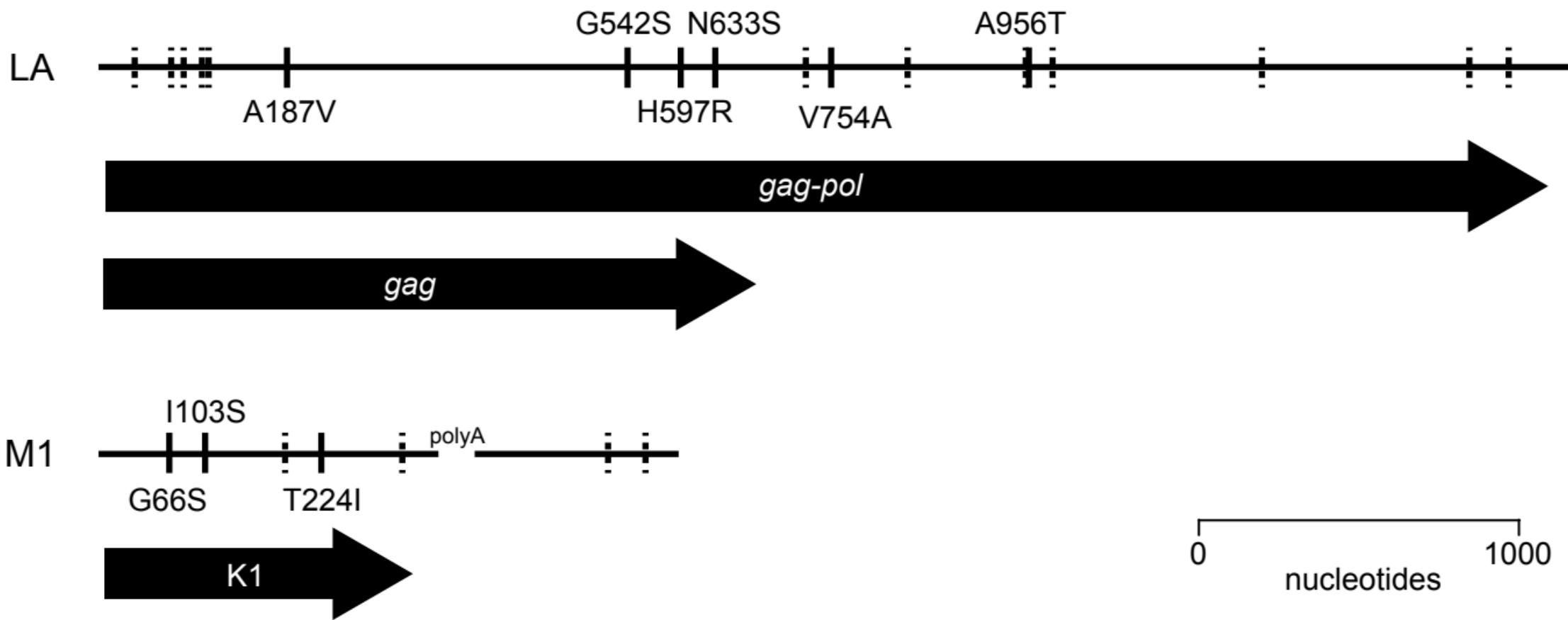


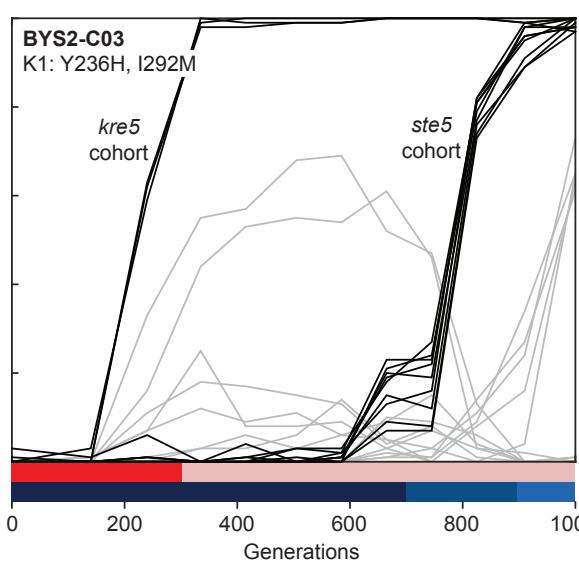
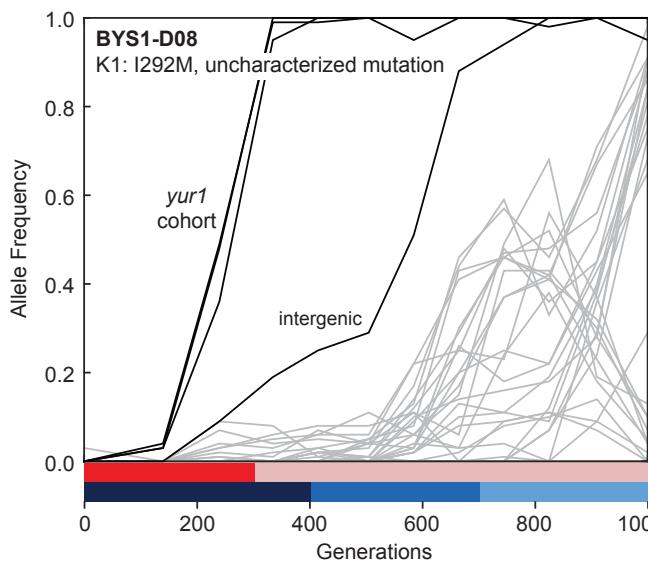
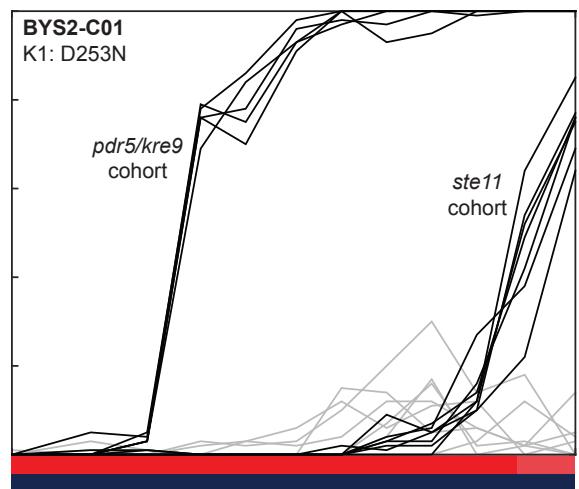
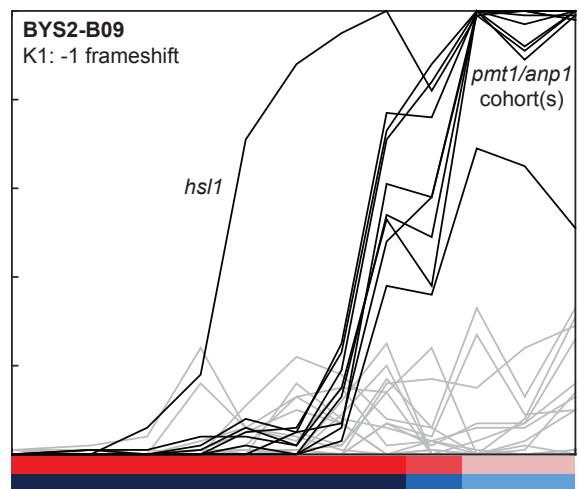
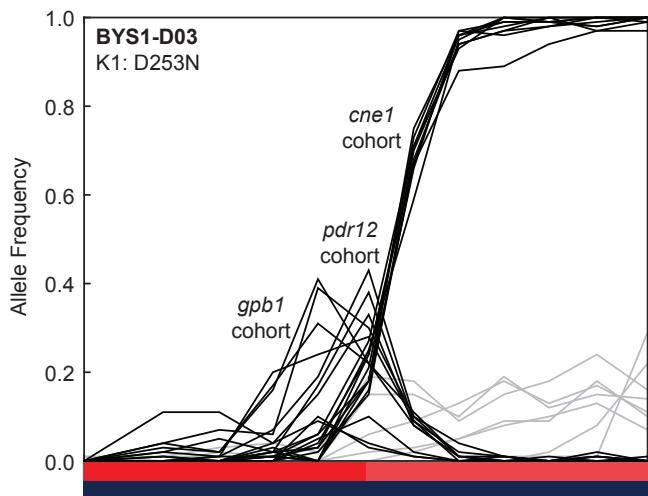
Killing Ability

Early

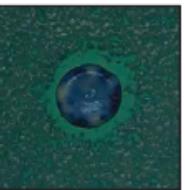
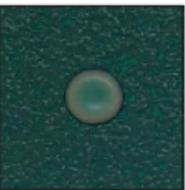
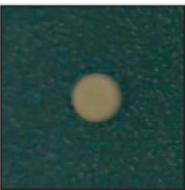
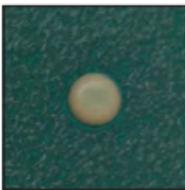
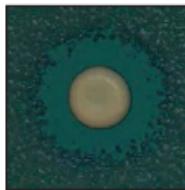
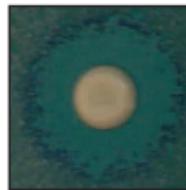
Intermediate

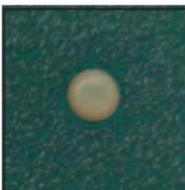
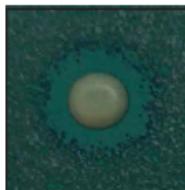



Late

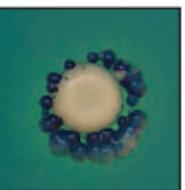
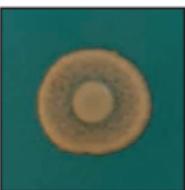
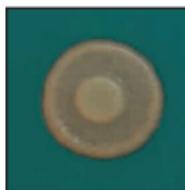






Immunity

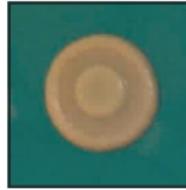




[Ancestral] [D253N] [P47S] [D106G] [I292M] [Frameshift]

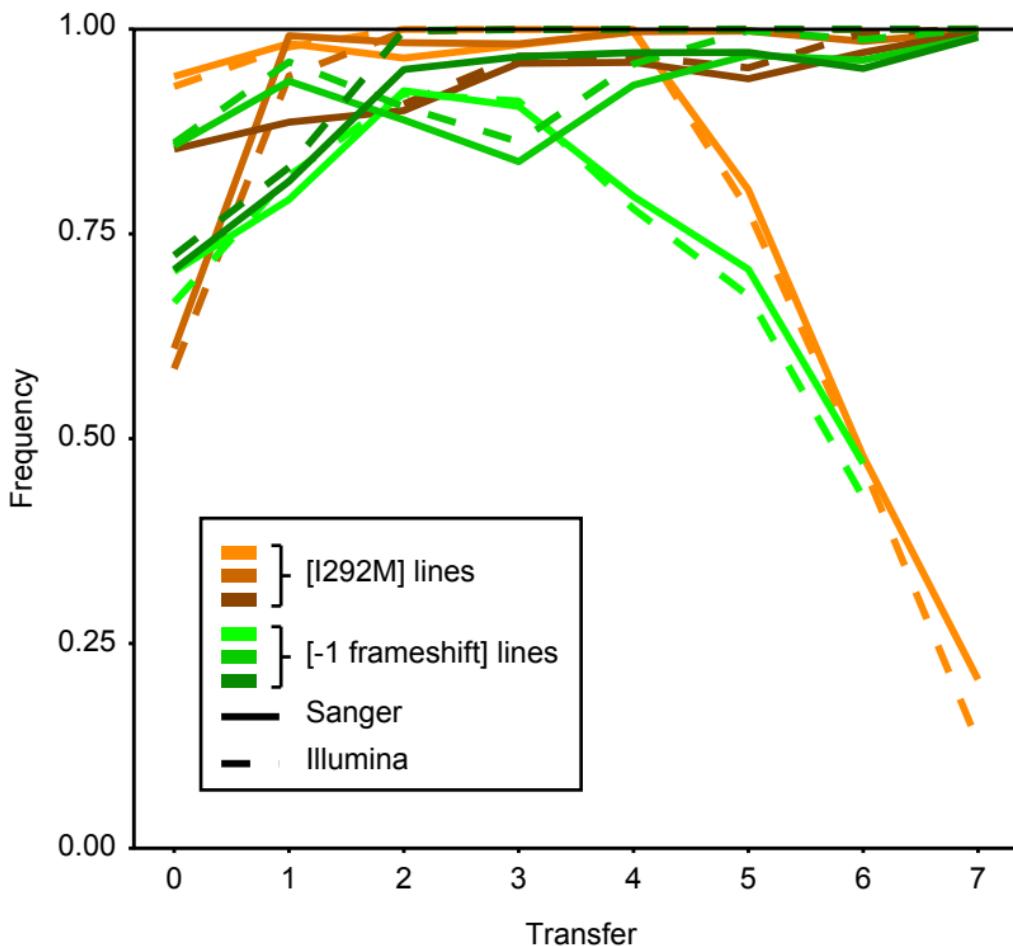




Population of Origin

Killing Ability



Cytoductant



Population of Origin

Immunity

Cytoductant

