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Abstract
Adaptive evolution navigates a balance between chance and determinism. The stochastic processes of mutation and drift 
generate phenotypic variation; however, once mutations reach an appreciable frequency in the population, their fate is gov-
erned by the deterministic action of selection, enriching for favorable genotypes and purging the less-favorable ones. The net 
result is that replicate populations will traverse similar—but not identical—pathways to higher fitness. This parallelism in 
evolutionary outcomes can be leveraged to identify the genes and pathways under selection. However, distinguishing between 
beneficial and neutral mutations is challenging because many beneficial mutations will be lost due to drift and clonal interfer-
ence, and many neutral (and even deleterious) mutations will fix by hitchhiking. Here, we review the best practices that our 
laboratory uses to identify genetic targets of selection from next-generation sequencing data of evolved yeast populations. 
The general principles for identifying the mutations driving adaptation will apply more broadly.
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Introduction

In his 1989 book, Wonderful Life, Stephen Jay Gould pro-
posed a thought experiment in which the reader is invited to 
“rewind the tape of life” and watch evolution play out again. 
The purpose of this exercise was to ask a seemingly unan-
swerable question: how likely was it that evolution would 
turn out this way? Or more broadly, how reproducible is the 
process of adaptive evolution? Sometimes nature provides 
partial answers to these questions. It has long been observed 
that populations adapting in parallel to the same environ-
ment will tend to find similar solutions to the same selective 
pressures (Grant et al. 2004; Protas et al. 2006; Jones et al. 
2012). These “natural experiments” suggest a degree of pre-
dictability in evolutionary outcomes. Natural experiments, 
however, are not perfect replicates. Details of the environ-
ments will differ, the number of replicates is constrained, 
and experimental parameters typically cannot be adjusted.

Around the time that Wonderful Life was released, Rich-
ard Lenski—then at the University of California Irvine—
initiated a landmark experiment using twelve replicate cul-
tures of E. coli to address the question of reproducibility 
(Lenski et al. 1991; Elena and Lenski 2003). Remarkably, 
this experiment has now surpassed 75,000 generations and 
is still ongoing, now in the laboratory of Jeff Barrick at UT 
Austin (see (Lenski 2023)). Early observations from this 
experiment—now known simply as the LTEE for Long-Term 
Evolution Experiment—strongly supported parallelism at 
the phenotypic level, such as increases in cell size (Elena 
et al. 1996) and loss of the ability to catabolize D-ribose 
(Cooper et  al. 2001). This parallelism extended to the 
genetic level: mutations in pbpA operon resulted in reduc-
tion of penicillin-binding proteins 2, which improves fitness, 
while also conferred changes in cell morphology (Philippe 
et al. 2009). Independent deletions in the ribose operon (rbs 
genes) caused a phenotypic change from Rbs + to Rbs− and 
confer a fitness advantage under the experimental conditions 
(Cooper et al. 2001).

Experimental evolution has been performed on a num-
ber of bacterial (Velicer et al. 1998; Barrett et al. 2005), 
viral (Bull et al. 1997; Wichman et al. 1999), and eukary-
otic microorganisms (Paquin and Adams 1983; Ferea et al. 
1999; Cowen et al. 2000; McDonald et al. 2009), as well as 
metazoan systems, such as Drosophila (Rose et al. 1992; 
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Burke et al. 2010). Some experiments predating the LTEE 
and some following by example. Despite the differences in 
the model systems, striking parallelism is observed at the 
phenotypic and genotypic levels. For instance, sterility often 
arises in the yeast Saccharomyces cerevisiae due to loss of 
the signaling through the mating pathway, which provides a 
fitness advantage to yeast in asexual populations (Lang et al. 
2009; Rojas Echenique et al. 2019).

With the rise of high-throughput sequencing technology, 
it is possible to identify cases of parallel evolution directly 
from the genome, by identifying common targets of selec-
tion across a range of conditions. Therefore, in addition to 
testing evolutionary theory, laboratory evolution experi-
ments are performed to compare adaptation strategies 
between conditions or strain backgrounds, to quantify the 
rate of adaptation, to optimize growth in a novel condition, 
and for functional genomics, identifying genes and pathways 
that respond to selective pressures. With beneficial muta-
tions in hand, one can ask a new set of questions regarding 
the distributions of fitness effects, the degree of dominance, 
pleiotropy, and epistasis of mutations that underly adapta-
tive evolution.

In this review article, we present the experimental design 
and fundamental parameters of evolution that our labora-
tory implements to identify targets of selection, with a focus 
on the yeast, Saccharomyces cerevisiae. We start by giving 
a guideline of experimental setups, considerations, and a 
broadly bioinformatic pipeline. Next, we introduce a statis-
tical analysis approach that has allowed us to filter putative 
drivers of adaptation. As the use of experimental evolu-
tion continues to expand, more standardized protocols are 
needed. We hope that these practices will narrow the search 
of candidate targets of selection in experimental evolution.

Considerations When Setting 
up a Laboratory Evolution Experiment

Variations in experimental parameters often depend on the 
objective of the experiment. Here, our objective is to uncover 
the mutations that are driving adaptation by sequencing the 
genomes of evolved clones and identifying genes and path-
ways that are mutated across replicate populations more 
often than expected by chance. Below we outline five con-
siderations when setting up a laboratory evolution experi-
ment and how these choices affect the ability to identify 
common targets of selection.

Experimental Replicates

The most important parameter is the number of replicate 
populations, simply stated: more is better. To increase 
throughput, many labs—including our own—perform 

laboratory evolution in 96-well plates and use liquid-han-
dling robotics to automate serial transfer. This experimen-
tal throughput strategy allows us to scale up the number of 
evolving populations in a relatively easy way (Kerr et al. 
2006; Lang and Murray 2011; Kryazhimskiy et al. 2014; 
Fisher et al. 2018; Marad et al. 2018; Johnson et al. 2021). 
Specifically, we perform daily dilution and dispensing of 
solutions into round-bottom 96-well plates using the Biomek 
FX Liquid Handler equipped with a 96 multichannel pod. 
This setup lends itself to performing evolution experiments 
where the total number of populations maintained is a multi-
ple of 96. The ideal number of populations needed to be able 
to identify common targets of selection will depend on the 
distribution of beneficial mutation rate and the distribution 
of fitness effects in the experimental conditions, parameters 
that are typically not known at the start of the experiment. In 
practice, we find that 48 replicate populations are sufficient 
to identify beneficial mutations by overrepresentation.

Population Size and Propagation Regime

Selection can act on fitness effects greater than 1/Ne, where 
Ne is the effective population size. In addition, a larger 
population will have more beneficial lineages present and 
competing within the population (Gerrish and Lenski 1998). 
In a serial dilution regimen, the population size increases 
exponentially between bottlenecks. This can be mitigated 
by imposing more frequent dilutions (Van den Bergh et al. 
2018) or using a scalable continuous culture system (Miller 
et al. 2013). Practical constraints of using 96-well plates 
limit the maximum population size in our experiments. 
Effective population size can be increased by performing 
smaller dilutions more frequently. For example, we directly 
compared adaptation at two population sizes by diluting 1:32 
every 12 h or 1:1,024 every 24 h. Both propagation regimes 
result in 10 generations of growth per day at Ne ~ 106 and 
Ne ~ 105, respectively (Lang and Murray 2011). For the sake 
of convenience and because the dynamics of adaptation were 
quite similar in these two conditions (Lang et al. 2013a, b), 
our standard practice is to dilute each culture 1:1,024 (210) 
every 24 h. Practically, we achieve this by doing serial 1:32 
dilutions of 4 μl into 124 μl of fresh medium. A strength of 
laboratory evolution experiments—particularly in microor-
ganisms—is the ability to maintain a “frozen fossil record” 
for each population. This collection allows one to revive 
ancestral populations to measure phenotypes, sequence their 
genomes, or replay the evolution of a population. In practice, 
freezing down once every week (70 generations) works well.

The Number of Generations

How long do you need to run an evolution experiment to 
detect parallel evolution? More is not always better and the 
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optimum generation number will depend on the mutation 
rate, population size, and the size of mutation targets. The 
first beneficial mutations will arise early in the evolution 
(Gerstein et al. 2011; Venkataram et al. 2016; Blundell et al. 
2019), whereas other beneficial mutations will emerge after 
thousands of generations (Wiser et al. 2013; Johnson et al. 
2021). Although we cannot control this stochasticity, we 
can get an idea of the population dynamics by knowing the 
initial fitness of the ancestor (Barrick et al. 2010; Kryazhim-
skiy et al. 2014; Jerison et al. 2017; Rojas Echenique et al. 
2019; Johnson et al. 2021) and the strength of the selective 
pressure (Barrick and Lenski 2013; Bailey et al. 2015; Cis-
neros-Mayoral et al. 2022). Parallelism has been observed 
in both short- and long-term experiments (Good et al. 2017). 
In general, more replicate populations and more generations 
will improve the ability to detect parallel evolution (Bailey 
et al. 2017). The extent to which populations have changed 
relative to each other and to their ancestor can be assessed by 
quantifying changes in fitness. This can be done by measur-
ing strain-specific growth rate (Dykhuizen et al. 1990; Nils-
son et al. 2006; Lindsey et al. 2013), pairwise competitions 
(Lang et al. 2011; Wiser and Lenski 2015; Payen and Dun-
ham 2016), or by tracking changes in barcode frequencies 
(Venkataram et al. 2016; Kinsler et at. 2020).

Over very long evolutionary times, as seen in the LTEE 
populations, may no longer be evolving from the same rel-
evant genetic background or even to the same environment 
(Quandt et al. 2015; Bajić et al. 2018). Statistical analysis 
of mutations appearing before and after Generation 17,500 
in the LTEE shows a shift from strong parallelism, where all 
twelve populations are sampling from the same set of ben-
eficial mutations to a situation where more available benefi-
cial mutations are specific to each population, contingent on 
the identify of fixed mutations that are unique to its history 
(Good et al. 2017). It is expected that the populations will 
eventually diverge, following their own idiosyncratic evolu-
tionary trajectories; however, in yeast, long-term evolution 
experiments out to 10,000 generations still show a strong 
signature of parallelism at the genetic level (Johnson et al. 
2021). The discussion that follows is based on populations 
of yeast that have evolved for several thousand generations—
long enough that many selective sweeps have occurred but 
not too long that the initial assumptions (replicate popula-
tions adapting to the same selective environment) are no 
longer met.

Choice of Strain Background

For laboratory evolution experiments, it is common to use 
laboratory strains (e.g., S288C, W303, and BY) that have 
well-annotated reference genomes and are well suited 
to propagation under controllable laboratory conditions. 
These backgrounds contain ancestral signatures of lab 

domestication that can cause fitness differences. However, 
the accessibility and convenient phenotypes of these strains 
make experimental findings comparable between laborato-
ries. Nevertheless, all lab strains may differ by spontane-
ous mutations, sequencing the ancestor prior to the evolu-
tion experiment will aid in identifying background-specific 
mutations, structural variants, and heterozygosity that are 
not included in the genomic reference.

Beyond strain background, the yeast Saccharomyces cer-
evisiae has two mating types and can be propagated as a hap-
loid or diploid. This choice will impact both the dynamics of 
adaptation and the targets of selection. Recessive beneficial 
mutations have no selective benefit when they first appear as 
heterozygous in diploid population. Therefore, these muta-
tions are only immediately beneficial in haploids, leading to 
faster adaptation compared to diploids (Gerstein et al. 2011; 
Marad et al. 2018; Sharp et al. 2018; Johnson et al. 2021). 
Despite the slower rate of adaptation in diploids, haploid 
populations will often undergo autoduplication events lead-
ing to increased ploidy (Venkataram et al. 2016; Fisher et al. 
2018; Tung et al. 2021). Diploid populations, on the other 
hand, acquire beneficial mutations that are at least partially 
dominant and often overdominant (Fisher et al. 2021; Aggeli 
et al. 2022). If heterozygosity exists in the starting strain, 
loss of heterozygosity (LOH) events are likely to dominate 
the mutational spectra (Gerstein et al. 2014; Smukowski Heil 
et al. 2017; James et al. 2019) due to higher rates of LOH 
compared to point mutation (Dutta et al. 2021).

Previous studies have initiated evolution experiments 
using strains harboring engineered or evolved mutations in 
order to assess evolutionary outcomes from different ini-
tial fitnesses, to identify compensatory mutations in com-
promised strains, or to alter mutation rates (Thompson 
et al. 2006; Harcombe et al. 2009; McDonald et al. 2012; 
Kryazhimskiy et al. 2014; Szamecz et al. 2014; Laan et al. 
2015; Cooper 2018; Helsen et al. 2020; LaBar et al. 2020; 
Vignogna et al. 2022). In the early days of experimental 
evolution, it was assumed that the dynamics of adaptation 
are dominated by rare beneficial mutations that occasionally 
survive drift and increase in frequency until they fix. Indeed, 
early observations seemed to support this view (Atwood 
et al. 1951; Paquin and Adams 1983). Given the assump-
tion that evolution was limited by the supply of mutations, 
the question often comes up as to whether the experimental-
ist should “speed things up” using strains with an elevated 
mutation rate (Taddei et al. 1997, Arjan G et al. 1999). Over 
time, the field came to realize that mutations are not limit-
ing—that for even a modestly sized population, mutation 
rate is high enough that multiple beneficial mutations will 
be spreading through the population simultaneously (Joseph 
and Hall 2004; Perfeito et al. 2007). Using mutator strains, 
therefore, has no practical benefit in terms of speeding up 
evolution experiments and comes at a great cost, and can 
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potentially decrease statistical power to identify common 
targets of selection by flooding the genome with hitchhiker 
mutations. It is also important to recognize that mutators 
often have a very different mutational spectrum compared 
to non-mutators (Foster et al. 2015, 2018; Sharp et al. 2018), 
which could in turn shift the distribution of beneficial muta-
tions (Sane et al. 2022; Tuffaha et al. 2022) or, in the case of 
mutators that destabilize homopolymeric runs and microsat-
ellites, present challenges for sequence aligners (Lang et al. 
2013a, b).

Choice of Environment

Just as mutator strains were once thought to be a necessary—
or at least a pragmatic—choice for experimental evolution, 
it was once conventional wisdom that some kind of stress 
needed to be applied to see evolution to knock the organ-
ism off of its fitness peak. After all, yeast and E. coli have 
been workhorse model systems in Genetics and Molecular 
Biology for over a century—surely they are well adapted 
to standard laboratory medium. However, standard labora-
tory procedures and best practices initiate new experiments 
from frozen collections and when strains propagate, they 
are routinely subjected to single-cell bottlenecks, mitigating 
the effect of selection. Laboratory strains (or any strain for 
that matter) are far from optimized for growth in laboratory 
conditions. So even under a “simple” and “optimal” environ-
ment, there is some degree of stress imposed that leads to 
an adaptive response (Hallsworth 2018). However, in most 
evolution experiments, a standard laboratory medium is used 
because it supports robust growth and is therefore a good 
starting point for laboratory evolution. Regimens, such as 
different concentrations or types of nutrients, temperature, 
shaking, competition, and pathogens, can be varied as the 
experimenter chooses to introduce higher cellular stress 
(Kawecki et al. 2012). The key point to consider is the ability 
to maintain growth conditions consistently over the duration 
of the experiment. For example, we use a separate incubator 
for our evolution experiments to avoid the constant open-
ing and closing of shared incubators. We produce medium 
in large batches and keep it separate at 4 ℃ to reduce the 
chance of contamination. Because our dilutions are per-
formed in non-sterile conditions, we need to add ampicil-
lin (100 mg/ml) and tetracycline (25 mg/ml) to our growth 
medium to prevent bacterial contamination.

Sometimes slight changes in the environment can affect 
evolution in subtle and surprising ways (Worthan et al. 
2023). For example, antibiotics added to yeast growth 
medium to prevent bacterial contamination have no detect-
able effect on our ancestral yeast strain. Nevertheless, some 
evolved genotypes have lower fitness if the antibiotics 
are removed (Aggeli et al. 2022). Another example is the 
choice to shake the cultures during cell growth. Although we 

typically use non-shaking conditions for practical reasons, 
this static environment creates a problem of accessing nutri-
ents as the cells settled. Mutations in the ergosterol path-
way allow cells to stick to the sides of the well and because 
these mutations are deleterious in a homogeneous culture, 
they create stable subpopulations, occupying different spa-
tial niches and maintained by frequency-dependent selec-
tion (Frenkel et al. 2015). A similar phenomenon occurs in 
non-shaken bacterial cultures (Rainey and Travisano 1998). 
As a final example, citrate is often added to the medium as 
either a buffer or a chelating agent. In a remarkable series of 
papers, the Lenski and Barrick groups dissected the complex 
series of events that allowed one population in the LTEE 
to evolve the ability to use citrate as a sole carbon source 
(Blount et al. 2012; Quandt et al. 2014, 2015).

Identifying Unique Mutations 
by Whole‑Genome Sequencing

Computer programmers are wont to use the phrase “Gar-
bage In, Garbage Out” as a warning that inferences are only 
as good as the data used to derive them. Accordingly, our 
ability to identify common targets of selection based on sta-
tistical overrepresentation necessitates that we first employ 
robust methods for identifying mutations in our evolved 
populations. One strategy is to sequence the whole popula-
tion at different time points. This can give a bigger picture 
of the evolutionary dynamics of adapting lineages, but it 
makes it difficult to estimate which mutations co-occur in 
the same lineage within a population (Lang et al. 2013a, 
b; Good et al. 2017). A point of consideration is that this 
strategy will depend on the sequencing depth, where only 
mutations that are present in at least 1% of individuals can 
be detected with 100-fold coverage. A second strategy is to 
sequence endpoint clones from each population (McDonald 
2019). This strategy identifies fixed mutations but can miss 
much of the genetic variation present in the whole popula-
tion. Sequencing a single clone will also pick up low-fre-
quency mutations that happen to be in the selected clone. 
For this reason, our standard procedure for S. cerevisiae is to 
sequence at least two clones from a given population, which 
allows us to distinguish between high-frequency mutations 
(shared between the clones) and low-frequency mutations 
(unique to a single clone). However, for species where mul-
tiple subpopulations coexist (Good et al. 2017; Behringer 
et al. 2018; Harris et al. 2021), two clones will not be suf-
ficient and the best approach may be a combination of clone 
and whole-population sequencing.

Although many sequencing platforms and computa-
tional tools exist for aligning reads and calling variants, 
our lab uses almost exclusively the Illumina platform and 
analyzes reads using BWA for alignment and FreeBayes 
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for variant calling. Methods to reduce the cost of Illumina 
library preparation (Baym et al. 2015) and the ability to 
multiplex a large number of samples make Illumina our 
preferred platform for whole-genome sequencing. All 
downstream computation analysis is performed on a High-
Performance Computing Cluster. We remove adapters and 
low-quality bases using Trimmomatic (Bolger et al. 2014). 
We align our reads to the appropriate reference genome 
using BWA-MEM (Li and Durbin 2009). The resulting 
sequence alignment (SAM) files are large and, therefore, 
are immediately converted to binary format (BAM) using 
SAMtools (Li et al. 2009). Next, we use the FreeBayes 
(Garrison and Marth 2012) variant detector to call SNVs 
and indels in the evolved genome in a Variant Call format 
(VCF). Although our laboratory uses BWA/FreeBayes, 
other aligners (e.g., Bowtie, STAR, Segemehl) and variant 
callers (e.g., GATK, Breseq) are routinely used for analy-
sis of clone and population-level sequencing (e.g., Zhu 
et al. 2014; Behringer et al. 2018; Johnson et al. 2021)).

VCF files typically contain hundreds (and sometimes over 
1000) putative variants, many of which are spurious calls 
due to sequencing or alignment error, often in low complex-
ity regions of the genome or in repeated sequences, such as 
tRNAs or paralogous gene pairs. These spurious calls often 
appear in many replicate populations—an attribute that can 
be used to remove them from the dataset. Observing paral-
lelism at the nucleotide level is much less common than at 
the level of genes (Tenaillon et al. 2012; Bailey et al. 2015). 
The few bona fide examples of parallelism at the level of 
nucleotide change involve reversion of auxotrophies (John-
son et al. 2021), frameshift mutations at short homopoly-
meric runs within genes (Lang et al. 2013a, b), and altera-
tion-of-function mutations near the active sites of proteins 
in the LTEE (Good et al. 2017; Maddamsetti et al. 2017). 
When the same variant is called in multiple populations, it 
is important to consider other explanations such as stand-
ing genetic variation generated during the initial overnight 
culture before the evolution or cross-contamination during 
library preparation or during the isolation of single clones.

To remove spurious calls, we use vcf-isec to first iden-
tify mutations that are common to most of the VCF files 
and to remove the common calls that are from each popu-
lation (Danecek et al. 2011). If the sequenced strain differs 
from the reference genome, those differences will also be 
removed at this step. We next annotate the functional effect 
for each mutation using SnpEff (Cingolani et al. 2012). 
This step requires a GFF annotation file identifying the 
gene boundaries, which is typically only available for a 
subset of laboratory strains. The final, and the most labori-
ous step, is manually validating variant calls in Integrative 
Genome Viewer (Robinson et al. 2011; Thorvaldsdóttir 
et al. 2013). Despite all the filters applied, many dubious 
variants manage to pass the filters. It is a good practice to 

always visually confirm variant calls and heterozygosity, 
if applicable. The inference of the zygosity will depend 
on the parameters that the variant caller uses and the read 
qualities. For consistent thresholds, we recommend to 
annotate homozygous variants with a read depth of ~15 
and an alternative allele frequency of ~0.9 (Fisher et al. 
2018; Marad et al. 2018; Martínez et al. 2022).

Identification of Common Targets 
of Selection

Putative genetic targets of selection can be identified as 
genes that are mutated more frequently than expected by 
chance across replicate populations. Different statistical 
methods have been used to predict genetic parallelism in 
experimental populations. The log-likelihood ratio test 
(G-test) is one of the approaches widely used in experimen-
tal evolution, principally for E. coli, where there are a large 
number of mutations (Tenaillon et al. 2016; Behringer et al. 
2018). For a smaller number of mutations, other studies have 
used Bray–Curtis Similarity (Turner et al. 2018) and Dice’s 
Coefficient of Similarity (Deatherage et al. 2017). In prin-
ciple, prediction of candidate target of selection is easiest if 
one assumes under the null model that all genes are equally 
likely to be hit by mutation (Shoemaker and Lennon 2022). 
For example, Lang et al. 2013a, b identified 723 coding 
sequence mutations. If we distribute these randomly over the 
5799 genes in the yeast genome, we expect, according to the 
Poisson distribution, only two genes to have been mutated 
in three or more populations. The data, however, show 24 
genes mutated in at least three populations, far in excess of 
the null expectation. Further increases in statistical power 
can be gained by restricting the statistical analysis to non-
synonymous mutations. Although codon usage bias selection 
implies that natural selection acts on synonymous variation 
in natural populations (Hershberg and Petrov 2008), they 
are rarely identified as beneficial mutations in experimental 
evolution, with a few notable exceptions (Bailey et al. 2021). 
Ignoring synonymous mutations removes a large background 
of hitchhiker mutations and produces more robust predic-
tions of true targets of selection (Martínez et al. 2022).

Thus far, we have assumed that all genes are equally 
likely to acquire a mutation by chance. Given the known 
variation in mutation rate across the genome (Lang and 
Murray 2011), this assumption is almost certainly violated. 
Without knowing the per gene mutation rate, we can attempt 
to correct for this by weighing our probabilities by gene size 
(with larger genes being more likely to acquire mutations 
by chance). We estimate the probability that the observed 
mutation will occur in each established genomic region 
(assuming a constant mutation rate): the expected number of 
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mutations for each coding region (σ), weighted for the cod-
ing sequence length (L) of the gene across the total length 
of the coding regions, in a given total number of mutations 
(M) is as follows:

The probability of observing � evolved mutations in each 
gene σ is as follows:

The Benjamin–Hochberg post hoc adjustment correction 
can be applied to correct for multiple hypothesis testing. 
Common targets of selection, then, must satisfy a signifi-
cance threshold rather than a minimal number of observed 
mutations (Fig. 1).

Beyond identifying parallel evolution at the gene level, 
Gene Ontology (GO) term enrichment can be used to iden-
tify biological pathways in which mutations are overrepre-
sented. This identifies putative targets of selection based on 
their functional association, even when individual genes are 
not significant on their own. Based on the types of mutations 
we observe, we can infer how selection is acting on the target 
genes and pathways. For example, in S. cerevisiae, genes 
in the Ras pathway appear to acquire missense, nonsense, 
and frameshift mutations indiscriminately, suggesting that 
selection is acting on loss of function. In contrast, genes 
in cell wall assembly acquire missense mutations almost 
exclusively, inferring that selection is acting on alteration 
or attenuation, not loss, of function. Similarly, in E. coli, 
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mutations in the NAD biosynthesis/regulator gene, nadR, to 
be disruptive, whereas mutations in the DNA topoisomerase 
gene, topA, are single-base substitution mutations that mod-
ify enzymatic activity (Deatherage and Barrick 2021). Due 
to their large target size, loss-of-function mutations are easi-
est to identify and, at first glance, appear to dominate labo-
ratory evolution experiments (Bailey and Bataillon 2016). 
However, over long-time scales, parallelism at the level of 
amino acid substitution becomes apparent, often at protein 
interfaces (Maddamsetti et al. 2017). A similar trend can be 
seen by aggregating data across multiple laboratory evolu-
tion experiments using a statistical framework to estimate 
the log-likelihood and posterior probabilities that selection 
is acting on loss of function or alteration of function given 
the observed mutational spectrum for any given gene (Fig. 2) 
(Vignogna et al. 2022).

Adaptive evolution is not just driven by point mutation 
but also by structural variants, including deletions, inser-
tions, and aneuploidies (Gorkovskiy and Verstrepen 2021). 
Like point mutations, copy number variations (CNVs) can 
also present strong signatures of parallelism. Chromosome-
scale mutations may occur at rates orders of magnitude 
higher than base substitutions (Zhang et al. 2013). There-
fore, contrary to single-nucleotide polymorphism (SNPs), 
the chance of seeing CNVs that are in the exact same region 
is more often than SNPs. To identify CNVs from Illumina 
coverage we use Control-FREEC (Boeva et al. 2012) and 
we confirm CNVs by visually inspecting coverage plots. A 
more thorough guide for identifying copy number variants, 
loss-of-heterozygosity events, and other karyotype changes 
is presented elsewhere (Smukowski Heil 2023; Spealman 
et al. 2023).

Limitations to the Recurrence‑Based 
Approach

The statistical approaches described above identify candi-
date genes and pathways underlying adaptation. Verifying 
these predictions requires measuring the fitness effects of 
putative beneficial mutations by reconstructing them in the 
ancestral background (Chou et al. 2011; Khan et al. 2011) 
or using bulk-segregant approaches that separate the effects 
of individual mutations (Buskirk et al. 2017; Aggeli et al. 
2022). CRISPR-Cas9 methods in yeast have made allele 
replacement feasible at large scale (DiCarlo et al. 2013; 
Shen et al. 2017; Sadhu et al. 2018; Sharon et al. 2018) and 
barcode-based fitness assays allow fitness to be quantified in 
bulk (Venkataram et al. 2016; Jagdish and Ba 2022; Kinsler 
et al. 2023).

The success of beneficial mutations is dependent on their 
fitness effects. Mutations that have a ~ 1.5% effect reach a 
higher frequency and are more likely to fix compared to 
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mutations that occur at exactly the same rate but have only 
a ~ 0.5% effect (Lang et al. 2011). Although the underlying 
distribution of fitness effects in any condition is unknown, 
both theory and experiment suggest that it is skewed with a 
large number of small-effect mutations and fewer mutations 
of large effect (Eyre-Walker and Keightley 2007). Experi-
mental evolution samples from the middle of the fitness 
distribution (Hegreness et al. 2006). At one end of the dis-
tribution, drift and clonal interference impede the spread of 
weakly beneficial mutations, making it unlikely for them to 
appear in replicate populations (Barrick and Lenski 2013). 
At the same time, some large effect beneficial mutations will 
be too rare to be sampled in multiple replicate populations, 
for example, where only specific point mutations confer a 
fitness advantage.

Beyond weak and/or rare beneficial mutations, strict 
recurrence-based methods are also prone to miss genetic 
interactions: mutations that are beneficial only when another 
mutation is present in the same background. In principle, 
the approach above can be extended to identify pairs of 
genes (rather than individual genes) in which mutations co-
occur more often than expected by chance. Applying this 
approach to two large laboratory evolution experiments in 
yeast showed that genetic interactions significantly affect 
evolution at the gene level; however, the power to identify 
specific pairs of interacting genes is limited (Fisher et al. 
2019; Johnson et al. 2021).

Overview

The combination of experimental evolution and whole-
genome sequencing has become a powerful tool for func-
tional genomics (Cooper 2018). Although it is not often 
described as such, experimental evolution is a versatile 
genetic screen, revealing the genes and pathways under 
selection in any environment. With population sizes ~105, 
evolution can in principle act on differences as small as 
0.001%, far below the ability to resolve by any pheno-
typic assay. With a genome size of 107 bp, a mutation rate 
of 10–10 per bp per generation, and continuous selective 
pressure exerted over 103 generations, each population 
will sample hundreds of thousands of coding sequence 
mutations. Furthermore, evolution can identify complex 
compensatory interactions involving multiple mutations. 
Establishing best practices for performing laboratory 
evolution experiments, standardizing methods for calling 
mutations, and developing statistical and experimental 
methods for identifying and validating targets of selec-
tion is crucial as our field continues to evolve.
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